diff --git a/Lab_dsa_3/Soal/Jawaban_Lab3_AriefTritomo_1506689061.ipynb b/Lab_dsa_3/Soal/Jawaban_Lab3_AriefTritomo_1506689061.ipynb index f2d55a43cdb0ab22768d0082be08ba5c7c50ff47..5b14f94cd4d459685ac5bcf8605a6ff833cc68ae 100644 --- a/Lab_dsa_3/Soal/Jawaban_Lab3_AriefTritomo_1506689061.ipynb +++ b/Lab_dsa_3/Soal/Jawaban_Lab3_AriefTritomo_1506689061.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 40, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -17,7 +17,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 3, "metadata": { "scrolled": true }, @@ -1792,7 +1792,7 @@ "[205 rows x 26 columns]" ] }, - "execution_count": 38, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -1805,7 +1805,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 4, "metadata": { "scrolled": true }, @@ -3580,7 +3580,7 @@ "[159 rows x 26 columns]" ] }, - "execution_count": 21, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -3593,1782 +3593,44 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 35, "metadata": { "scrolled": true }, "outputs": [ { "data": { - "text/html": [ - "<div>\n", - "<style scoped>\n", - " .dataframe tbody tr th:only-of-type {\n", - " vertical-align: middle;\n", - " }\n", - "\n", - " .dataframe tbody tr th {\n", - " vertical-align: top;\n", - " }\n", - "\n", - " .dataframe thead th {\n", - " text-align: right;\n", - " }\n", - "</style>\n", - "<table border=\"1\" class=\"dataframe\">\n", - " <thead>\n", - " <tr style=\"text-align: right;\">\n", - " <th></th>\n", - " <th>symboling</th>\n", - " <th>normalized-losses</th>\n", - " <th>make</th>\n", - " <th>fuel-type</th>\n", - " <th>aspiration</th>\n", - " <th>num-of-doors</th>\n", - " <th>body-style</th>\n", - " <th>drive-wheels</th>\n", - " <th>engine-location</th>\n", - " <th>wheel-base</th>\n", - " <th>...</th>\n", - " <th>engine-size</th>\n", - " <th>fuel-system</th>\n", - " <th>bore</th>\n", - " <th>stroke</th>\n", - " <th>compression-ratio</th>\n", - " <th>horsepower</th>\n", - " <th>peak-rpm</th>\n", - " <th>city-mpg</th>\n", - " <th>highway-mpg</th>\n", - " <th>price</th>\n", - " </tr>\n", - " </thead>\n", - " <tbody>\n", - " <tr>\n", - " <th>0</th>\n", - " <td>3</td>\n", - " <td>122.0</td>\n", - " <td>alfa-romero</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>two</td>\n", - " <td>convertible</td>\n", - " <td>rwd</td>\n", - " <td>front</td>\n", - " <td>88.6</td>\n", - " <td>...</td>\n", - " <td>130</td>\n", - " <td>mpfi</td>\n", - " <td>3.47</td>\n", - " <td>2.68</td>\n", - " <td>9.00</td>\n", - " <td>111.0</td>\n", - " <td>5000.0</td>\n", - " <td>21</td>\n", - " <td>27</td>\n", - " <td>13495.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>1</th>\n", - " <td>3</td>\n", - " <td>122.0</td>\n", - " <td>alfa-romero</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>two</td>\n", - " <td>convertible</td>\n", - " <td>rwd</td>\n", - " <td>front</td>\n", - " <td>88.6</td>\n", - " <td>...</td>\n", - " <td>130</td>\n", - " <td>mpfi</td>\n", - " <td>3.47</td>\n", - " <td>2.68</td>\n", - " <td>9.00</td>\n", - " <td>111.0</td>\n", - " <td>5000.0</td>\n", - " <td>21</td>\n", - " <td>27</td>\n", - " <td>16500.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2</th>\n", - " <td>1</td>\n", - " <td>122.0</td>\n", - " <td>alfa-romero</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>two</td>\n", - " <td>hatchback</td>\n", - " <td>rwd</td>\n", - " <td>front</td>\n", - " <td>94.5</td>\n", - " <td>...</td>\n", - " <td>152</td>\n", - " <td>mpfi</td>\n", - " <td>2.68</td>\n", - " <td>3.47</td>\n", - " <td>9.00</td>\n", - " <td>154.0</td>\n", - " <td>5000.0</td>\n", - " <td>19</td>\n", - " <td>26</td>\n", - " <td>16500.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>3</th>\n", - " <td>2</td>\n", - " <td>164.0</td>\n", - " <td>audi</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>sedan</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>99.8</td>\n", - " <td>...</td>\n", - " <td>109</td>\n", - " <td>mpfi</td>\n", - " <td>3.19</td>\n", - " <td>3.40</td>\n", - " <td>10.00</td>\n", - " <td>102.0</td>\n", - " <td>5500.0</td>\n", - " <td>24</td>\n", - " <td>30</td>\n", - " <td>13950.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>4</th>\n", - " <td>2</td>\n", - " <td>164.0</td>\n", - " <td>audi</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>sedan</td>\n", - " <td>4wd</td>\n", - " <td>front</td>\n", - " <td>99.4</td>\n", - " <td>...</td>\n", - " <td>136</td>\n", - " <td>mpfi</td>\n", - " <td>3.19</td>\n", - " <td>3.40</td>\n", - " <td>8.00</td>\n", - " <td>115.0</td>\n", - " <td>5500.0</td>\n", - " <td>18</td>\n", - " <td>22</td>\n", - " <td>17450.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>5</th>\n", - " <td>2</td>\n", - " <td>122.0</td>\n", - " <td>audi</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>two</td>\n", - " <td>sedan</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>99.8</td>\n", - " <td>...</td>\n", - " <td>136</td>\n", - " <td>mpfi</td>\n", - " <td>3.19</td>\n", - " <td>3.40</td>\n", - " <td>8.50</td>\n", - " <td>110.0</td>\n", - " <td>5500.0</td>\n", - " <td>19</td>\n", - " <td>25</td>\n", - " <td>15250.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>6</th>\n", - " <td>1</td>\n", - " <td>158.0</td>\n", - " <td>audi</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>sedan</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>105.8</td>\n", - " <td>...</td>\n", - " <td>136</td>\n", - " <td>mpfi</td>\n", - " <td>3.19</td>\n", - " <td>3.40</td>\n", - " <td>8.50</td>\n", - " <td>110.0</td>\n", - " <td>5500.0</td>\n", - " <td>19</td>\n", - " <td>25</td>\n", - " <td>17710.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>7</th>\n", - " <td>1</td>\n", - " <td>122.0</td>\n", - " <td>audi</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>wagon</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>105.8</td>\n", - " <td>...</td>\n", - " <td>136</td>\n", - " <td>mpfi</td>\n", - " <td>3.19</td>\n", - " <td>3.40</td>\n", - " <td>8.50</td>\n", - " <td>110.0</td>\n", - " <td>5500.0</td>\n", - " <td>19</td>\n", - " <td>25</td>\n", - " <td>18920.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>8</th>\n", - " <td>1</td>\n", - " <td>158.0</td>\n", - " <td>audi</td>\n", - " <td>gas</td>\n", - " <td>turbo</td>\n", - " <td>four</td>\n", - " <td>sedan</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>105.8</td>\n", - " <td>...</td>\n", - " <td>131</td>\n", - " <td>mpfi</td>\n", - " <td>3.13</td>\n", - " <td>3.40</td>\n", - " <td>8.30</td>\n", - " <td>140.0</td>\n", - " <td>5500.0</td>\n", - " <td>17</td>\n", - " <td>20</td>\n", - " <td>23875.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>9</th>\n", - " <td>0</td>\n", - " <td>122.0</td>\n", - " <td>audi</td>\n", - " <td>gas</td>\n", - " <td>turbo</td>\n", - " <td>two</td>\n", - " <td>hatchback</td>\n", - " <td>4wd</td>\n", - " <td>front</td>\n", - " <td>99.5</td>\n", - " <td>...</td>\n", - " <td>131</td>\n", - " <td>mpfi</td>\n", - " <td>3.13</td>\n", - " <td>3.40</td>\n", - " <td>7.00</td>\n", - " <td>160.0</td>\n", - " <td>5500.0</td>\n", - " <td>16</td>\n", - " <td>22</td>\n", - " <td>13207.129353</td>\n", - " </tr>\n", - " <tr>\n", - " <th>10</th>\n", - " <td>2</td>\n", - " <td>192.0</td>\n", - " <td>bmw</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>two</td>\n", - " <td>sedan</td>\n", - " <td>rwd</td>\n", - " <td>front</td>\n", - " <td>101.2</td>\n", - " <td>...</td>\n", - " <td>108</td>\n", - " <td>mpfi</td>\n", - " <td>3.50</td>\n", - " <td>2.80</td>\n", - " <td>8.80</td>\n", - " <td>101.0</td>\n", - " <td>5800.0</td>\n", - " <td>23</td>\n", - " <td>29</td>\n", - " <td>16430.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>11</th>\n", - " <td>0</td>\n", - " <td>192.0</td>\n", - " <td>bmw</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>sedan</td>\n", - " <td>rwd</td>\n", - " <td>front</td>\n", - " <td>101.2</td>\n", - " <td>...</td>\n", - " <td>108</td>\n", - " <td>mpfi</td>\n", - " <td>3.50</td>\n", - " <td>2.80</td>\n", - " <td>8.80</td>\n", - " <td>101.0</td>\n", - " <td>5800.0</td>\n", - " <td>23</td>\n", - " <td>29</td>\n", - " <td>16925.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>12</th>\n", - " <td>0</td>\n", - " <td>188.0</td>\n", - " <td>bmw</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>two</td>\n", - " <td>sedan</td>\n", - " <td>rwd</td>\n", - " <td>front</td>\n", - " <td>101.2</td>\n", - " <td>...</td>\n", - " <td>164</td>\n", - " <td>mpfi</td>\n", - " <td>3.31</td>\n", - " <td>3.19</td>\n", - " <td>9.00</td>\n", - " <td>121.0</td>\n", - " <td>4250.0</td>\n", - " <td>21</td>\n", - " <td>28</td>\n", - " <td>20970.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>13</th>\n", - " <td>0</td>\n", - " <td>188.0</td>\n", - " <td>bmw</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>sedan</td>\n", - " <td>rwd</td>\n", - " <td>front</td>\n", - " <td>101.2</td>\n", - " <td>...</td>\n", - " <td>164</td>\n", - " <td>mpfi</td>\n", - " <td>3.31</td>\n", - " <td>3.19</td>\n", - " <td>9.00</td>\n", - " <td>121.0</td>\n", - " <td>4250.0</td>\n", - " <td>21</td>\n", - " <td>28</td>\n", - " <td>21105.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>14</th>\n", - " <td>1</td>\n", - " <td>122.0</td>\n", - " <td>bmw</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>sedan</td>\n", - " <td>rwd</td>\n", - " <td>front</td>\n", - " <td>103.5</td>\n", - " <td>...</td>\n", - " <td>164</td>\n", - " <td>mpfi</td>\n", - " <td>3.31</td>\n", - " <td>3.19</td>\n", - " <td>9.00</td>\n", - " <td>121.0</td>\n", - " <td>4250.0</td>\n", - " <td>20</td>\n", - " <td>25</td>\n", - " <td>24565.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>15</th>\n", - " <td>0</td>\n", - " <td>122.0</td>\n", - " <td>bmw</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>sedan</td>\n", - " <td>rwd</td>\n", - " <td>front</td>\n", - " <td>103.5</td>\n", - " <td>...</td>\n", - " <td>209</td>\n", - " <td>mpfi</td>\n", - " <td>3.62</td>\n", - " <td>3.39</td>\n", - " <td>8.00</td>\n", - " <td>182.0</td>\n", - " <td>5400.0</td>\n", - " <td>16</td>\n", - " <td>22</td>\n", - " <td>30760.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>16</th>\n", - " <td>0</td>\n", - " <td>122.0</td>\n", - " <td>bmw</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>two</td>\n", - " <td>sedan</td>\n", - " <td>rwd</td>\n", - " <td>front</td>\n", - " <td>103.5</td>\n", - " <td>...</td>\n", - " <td>209</td>\n", - " <td>mpfi</td>\n", - " <td>3.62</td>\n", - " <td>3.39</td>\n", - " <td>8.00</td>\n", - " <td>182.0</td>\n", - " <td>5400.0</td>\n", - " <td>16</td>\n", - " <td>22</td>\n", - " <td>41315.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>17</th>\n", - " <td>0</td>\n", - " <td>122.0</td>\n", - " <td>bmw</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>sedan</td>\n", - " <td>rwd</td>\n", - " <td>front</td>\n", - " <td>110.0</td>\n", - " <td>...</td>\n", - " <td>209</td>\n", - " <td>mpfi</td>\n", - " <td>3.62</td>\n", - " <td>3.39</td>\n", - " <td>8.00</td>\n", - " <td>182.0</td>\n", - " <td>5400.0</td>\n", - " <td>15</td>\n", - " <td>20</td>\n", - " <td>36880.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>18</th>\n", - " <td>2</td>\n", - " <td>121.0</td>\n", - " <td>chevrolet</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>two</td>\n", - " <td>hatchback</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>88.4</td>\n", - " <td>...</td>\n", - " <td>61</td>\n", - " <td>2bbl</td>\n", - " <td>2.91</td>\n", - " <td>3.03</td>\n", - " <td>9.50</td>\n", - " <td>48.0</td>\n", - " <td>5100.0</td>\n", - " <td>47</td>\n", - " <td>53</td>\n", - " <td>5151.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>19</th>\n", - " <td>1</td>\n", - " <td>98.0</td>\n", - " <td>chevrolet</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>two</td>\n", - " <td>hatchback</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>94.5</td>\n", - " <td>...</td>\n", - " <td>90</td>\n", - " <td>2bbl</td>\n", - " <td>3.03</td>\n", - " <td>3.11</td>\n", - " <td>9.60</td>\n", - " <td>70.0</td>\n", - " <td>5400.0</td>\n", - " <td>38</td>\n", - " <td>43</td>\n", - " <td>6295.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>20</th>\n", - " <td>0</td>\n", - " <td>81.0</td>\n", - " <td>chevrolet</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>sedan</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>94.5</td>\n", - " <td>...</td>\n", - " <td>90</td>\n", - " <td>2bbl</td>\n", - " <td>3.03</td>\n", - " <td>3.11</td>\n", - " <td>9.60</td>\n", - " <td>70.0</td>\n", - " <td>5400.0</td>\n", - " <td>38</td>\n", - " <td>43</td>\n", - " <td>6575.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>21</th>\n", - " <td>1</td>\n", - " <td>118.0</td>\n", - " <td>dodge</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>two</td>\n", - " <td>hatchback</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>93.7</td>\n", - " <td>...</td>\n", - " <td>90</td>\n", - " <td>2bbl</td>\n", - " <td>2.97</td>\n", - " <td>3.23</td>\n", - " <td>9.41</td>\n", - " <td>68.0</td>\n", - " <td>5500.0</td>\n", - " <td>37</td>\n", - " <td>41</td>\n", - " <td>5572.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>22</th>\n", - " <td>1</td>\n", - " <td>118.0</td>\n", - " <td>dodge</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>two</td>\n", - " <td>hatchback</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>93.7</td>\n", - " <td>...</td>\n", - " <td>90</td>\n", - " <td>2bbl</td>\n", - " <td>2.97</td>\n", - " <td>3.23</td>\n", - " <td>9.40</td>\n", - " <td>68.0</td>\n", - " <td>5500.0</td>\n", - " <td>31</td>\n", - " <td>38</td>\n", - " <td>6377.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>23</th>\n", - " <td>1</td>\n", - " <td>118.0</td>\n", - " <td>dodge</td>\n", - " <td>gas</td>\n", - " <td>turbo</td>\n", - " <td>two</td>\n", - " <td>hatchback</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>93.7</td>\n", - " <td>...</td>\n", - " <td>98</td>\n", - " <td>mpfi</td>\n", - " <td>3.03</td>\n", - " <td>3.39</td>\n", - " <td>7.60</td>\n", - " <td>102.0</td>\n", - " <td>5500.0</td>\n", - " <td>24</td>\n", - " <td>30</td>\n", - " <td>7957.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>24</th>\n", - " <td>1</td>\n", - " <td>148.0</td>\n", - " <td>dodge</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>hatchback</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>93.7</td>\n", - " <td>...</td>\n", - " <td>90</td>\n", - " <td>2bbl</td>\n", - " <td>2.97</td>\n", - " <td>3.23</td>\n", - " <td>9.40</td>\n", - " <td>68.0</td>\n", - " <td>5500.0</td>\n", - " <td>31</td>\n", - " <td>38</td>\n", - " <td>6229.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>25</th>\n", - " <td>1</td>\n", - " <td>148.0</td>\n", - " <td>dodge</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>sedan</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>93.7</td>\n", - " <td>...</td>\n", - " <td>90</td>\n", - " <td>2bbl</td>\n", - " <td>2.97</td>\n", - " <td>3.23</td>\n", - " <td>9.40</td>\n", - " <td>68.0</td>\n", - " <td>5500.0</td>\n", - " <td>31</td>\n", - " <td>38</td>\n", - " <td>6692.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>26</th>\n", - " <td>1</td>\n", - " <td>148.0</td>\n", - " <td>dodge</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>sedan</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>93.7</td>\n", - " <td>...</td>\n", - " <td>90</td>\n", - " <td>2bbl</td>\n", - " <td>2.97</td>\n", - " <td>3.23</td>\n", - " <td>9.40</td>\n", - " <td>68.0</td>\n", - " <td>5500.0</td>\n", - " <td>31</td>\n", - " <td>38</td>\n", - " <td>7609.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>28</th>\n", - " <td>-1</td>\n", - " <td>110.0</td>\n", - " <td>dodge</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>wagon</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>103.3</td>\n", - " <td>...</td>\n", - " <td>122</td>\n", - " <td>2bbl</td>\n", - " <td>3.34</td>\n", - " <td>3.46</td>\n", - " <td>8.50</td>\n", - " <td>88.0</td>\n", - " <td>5000.0</td>\n", - " <td>24</td>\n", - " <td>30</td>\n", - " <td>8921.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>29</th>\n", - " <td>3</td>\n", - " <td>145.0</td>\n", - " <td>dodge</td>\n", - " <td>gas</td>\n", - " <td>turbo</td>\n", - " <td>two</td>\n", - " <td>hatchback</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>95.9</td>\n", - " <td>...</td>\n", - " <td>156</td>\n", - " <td>mfi</td>\n", - " <td>3.60</td>\n", - " <td>3.90</td>\n", - " <td>7.00</td>\n", - " <td>145.0</td>\n", - " <td>5000.0</td>\n", - " <td>19</td>\n", - " <td>24</td>\n", - " <td>12964.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>30</th>\n", - " <td>2</td>\n", - " <td>137.0</td>\n", - " <td>honda</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>two</td>\n", - " <td>hatchback</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>86.6</td>\n", - " <td>...</td>\n", - " <td>92</td>\n", - " <td>1bbl</td>\n", - " <td>2.91</td>\n", - " <td>3.41</td>\n", - " <td>9.60</td>\n", - " <td>58.0</td>\n", - " <td>4800.0</td>\n", - " <td>49</td>\n", - " <td>54</td>\n", - " <td>6479.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>...</th>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " </tr>\n", - " <tr>\n", - " <th>175</th>\n", - " <td>-1</td>\n", - " <td>65.0</td>\n", - " <td>toyota</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>hatchback</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>102.4</td>\n", - " <td>...</td>\n", - " <td>122</td>\n", - " <td>mpfi</td>\n", - " <td>3.31</td>\n", - " <td>3.54</td>\n", - " <td>8.70</td>\n", - " <td>92.0</td>\n", - " <td>4200.0</td>\n", - " <td>27</td>\n", - " <td>32</td>\n", - " <td>9988.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>176</th>\n", - " <td>-1</td>\n", - " <td>65.0</td>\n", - " <td>toyota</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>sedan</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>102.4</td>\n", - " <td>...</td>\n", - " <td>122</td>\n", - " <td>mpfi</td>\n", - " <td>3.31</td>\n", - " <td>3.54</td>\n", - " <td>8.70</td>\n", - " <td>92.0</td>\n", - " <td>4200.0</td>\n", - " <td>27</td>\n", - " <td>32</td>\n", - " <td>10898.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>177</th>\n", - " <td>-1</td>\n", - " <td>65.0</td>\n", - " <td>toyota</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>hatchback</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>102.4</td>\n", - " <td>...</td>\n", - " <td>122</td>\n", - " <td>mpfi</td>\n", - " <td>3.31</td>\n", - " <td>3.54</td>\n", - " <td>8.70</td>\n", - " <td>92.0</td>\n", - " <td>4200.0</td>\n", - " <td>27</td>\n", - " <td>32</td>\n", - " <td>11248.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>178</th>\n", - " <td>3</td>\n", - " <td>197.0</td>\n", - " <td>toyota</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>two</td>\n", - " <td>hatchback</td>\n", - " <td>rwd</td>\n", - " <td>front</td>\n", - " <td>102.9</td>\n", - " <td>...</td>\n", - " <td>171</td>\n", - " <td>mpfi</td>\n", - " <td>3.27</td>\n", - " <td>3.35</td>\n", - " <td>9.30</td>\n", - " <td>161.0</td>\n", - " <td>5200.0</td>\n", - " <td>20</td>\n", - " <td>24</td>\n", - " <td>16558.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>179</th>\n", - " <td>3</td>\n", - " <td>197.0</td>\n", - " <td>toyota</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>two</td>\n", - " <td>hatchback</td>\n", - " <td>rwd</td>\n", - " <td>front</td>\n", - " <td>102.9</td>\n", - " <td>...</td>\n", - " <td>171</td>\n", - " <td>mpfi</td>\n", - " <td>3.27</td>\n", - " <td>3.35</td>\n", - " <td>9.30</td>\n", - " <td>161.0</td>\n", - " <td>5200.0</td>\n", - " <td>19</td>\n", - " <td>24</td>\n", - " <td>15998.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>180</th>\n", - " <td>-1</td>\n", - " <td>90.0</td>\n", - " <td>toyota</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>sedan</td>\n", - " <td>rwd</td>\n", - " <td>front</td>\n", - " <td>104.5</td>\n", - " <td>...</td>\n", - " <td>171</td>\n", - " <td>mpfi</td>\n", - " <td>3.27</td>\n", - " <td>3.35</td>\n", - " <td>9.20</td>\n", - " <td>156.0</td>\n", - " <td>5200.0</td>\n", - " <td>20</td>\n", - " <td>24</td>\n", - " <td>15690.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>181</th>\n", - " <td>-1</td>\n", - " <td>122.0</td>\n", - " <td>toyota</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>wagon</td>\n", - " <td>rwd</td>\n", - " <td>front</td>\n", - " <td>104.5</td>\n", - " <td>...</td>\n", - " <td>161</td>\n", - " <td>mpfi</td>\n", - " <td>3.27</td>\n", - " <td>3.35</td>\n", - " <td>9.20</td>\n", - " <td>156.0</td>\n", - " <td>5200.0</td>\n", - " <td>19</td>\n", - " <td>24</td>\n", - " <td>15750.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>182</th>\n", - " <td>2</td>\n", - " <td>122.0</td>\n", - " <td>volkswagen</td>\n", - " <td>diesel</td>\n", - " <td>std</td>\n", - " <td>two</td>\n", - " <td>sedan</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>97.3</td>\n", - " <td>...</td>\n", - " <td>97</td>\n", - " <td>idi</td>\n", - " <td>3.01</td>\n", - " <td>3.40</td>\n", - " <td>23.00</td>\n", - " <td>52.0</td>\n", - " <td>4800.0</td>\n", - " <td>37</td>\n", - " <td>46</td>\n", - " <td>7775.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>183</th>\n", - " <td>2</td>\n", - " <td>122.0</td>\n", - " <td>volkswagen</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>two</td>\n", - " <td>sedan</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>97.3</td>\n", - " <td>...</td>\n", - " <td>109</td>\n", - " <td>mpfi</td>\n", - " <td>3.19</td>\n", - " <td>3.40</td>\n", - " <td>9.00</td>\n", - " <td>85.0</td>\n", - " <td>5250.0</td>\n", - " <td>27</td>\n", - " <td>34</td>\n", - " <td>7975.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>184</th>\n", - " <td>2</td>\n", - " <td>94.0</td>\n", - " <td>volkswagen</td>\n", - " <td>diesel</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>sedan</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>97.3</td>\n", - " <td>...</td>\n", - " <td>97</td>\n", - " <td>idi</td>\n", - " <td>3.01</td>\n", - " <td>3.40</td>\n", - " <td>23.00</td>\n", - " <td>52.0</td>\n", - " <td>4800.0</td>\n", - " <td>37</td>\n", - " <td>46</td>\n", - " <td>7995.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>185</th>\n", - " <td>2</td>\n", - " <td>94.0</td>\n", - " <td>volkswagen</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>sedan</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>97.3</td>\n", - " <td>...</td>\n", - " <td>109</td>\n", - " <td>mpfi</td>\n", - " <td>3.19</td>\n", - " <td>3.40</td>\n", - " <td>9.00</td>\n", - " <td>85.0</td>\n", - " <td>5250.0</td>\n", - " <td>27</td>\n", - " <td>34</td>\n", - " <td>8195.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>186</th>\n", - " <td>2</td>\n", - " <td>94.0</td>\n", - " <td>volkswagen</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>sedan</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>97.3</td>\n", - " <td>...</td>\n", - " <td>109</td>\n", - " <td>mpfi</td>\n", - " <td>3.19</td>\n", - " <td>3.40</td>\n", - " <td>9.00</td>\n", - " <td>85.0</td>\n", - " <td>5250.0</td>\n", - " <td>27</td>\n", - " <td>34</td>\n", - " <td>8495.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>187</th>\n", - " <td>2</td>\n", - " <td>94.0</td>\n", - " <td>volkswagen</td>\n", - " <td>diesel</td>\n", - " <td>turbo</td>\n", - " <td>four</td>\n", - " <td>sedan</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>97.3</td>\n", - " <td>...</td>\n", - " <td>97</td>\n", - " <td>idi</td>\n", - " <td>3.01</td>\n", - " <td>3.40</td>\n", - " <td>23.00</td>\n", - " <td>68.0</td>\n", - " <td>4500.0</td>\n", - " <td>37</td>\n", - " <td>42</td>\n", - " <td>9495.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>188</th>\n", - " <td>2</td>\n", - " <td>94.0</td>\n", - " <td>volkswagen</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>sedan</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>97.3</td>\n", - " <td>...</td>\n", - " <td>109</td>\n", - " <td>mpfi</td>\n", - " <td>3.19</td>\n", - " <td>3.40</td>\n", - " <td>10.00</td>\n", - " <td>100.0</td>\n", - " <td>5500.0</td>\n", - " <td>26</td>\n", - " <td>32</td>\n", - " <td>9995.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>189</th>\n", - " <td>3</td>\n", - " <td>122.0</td>\n", - " <td>volkswagen</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>two</td>\n", - " <td>convertible</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>94.5</td>\n", - " <td>...</td>\n", - " <td>109</td>\n", - " <td>mpfi</td>\n", - " <td>3.19</td>\n", - " <td>3.40</td>\n", - " <td>8.50</td>\n", - " <td>90.0</td>\n", - " <td>5500.0</td>\n", - " <td>24</td>\n", - " <td>29</td>\n", - " <td>11595.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>190</th>\n", - " <td>3</td>\n", - " <td>256.0</td>\n", - " <td>volkswagen</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>two</td>\n", - " <td>hatchback</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>94.5</td>\n", - " <td>...</td>\n", - " <td>109</td>\n", - " <td>mpfi</td>\n", - " <td>3.19</td>\n", - " <td>3.40</td>\n", - " <td>8.50</td>\n", - " <td>90.0</td>\n", - " <td>5500.0</td>\n", - " <td>24</td>\n", - " <td>29</td>\n", - " <td>9980.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>191</th>\n", - " <td>0</td>\n", - " <td>122.0</td>\n", - " <td>volkswagen</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>sedan</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>100.4</td>\n", - " <td>...</td>\n", - " <td>136</td>\n", - " <td>mpfi</td>\n", - " <td>3.19</td>\n", - " <td>3.40</td>\n", - " <td>8.50</td>\n", - " <td>110.0</td>\n", - " <td>5500.0</td>\n", - " <td>19</td>\n", - " <td>24</td>\n", - " <td>13295.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>192</th>\n", - " <td>0</td>\n", - " <td>122.0</td>\n", - " <td>volkswagen</td>\n", - " <td>diesel</td>\n", - " <td>turbo</td>\n", - " <td>four</td>\n", - " <td>sedan</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>100.4</td>\n", - " <td>...</td>\n", - " <td>97</td>\n", - " <td>idi</td>\n", - " <td>3.01</td>\n", - " <td>3.40</td>\n", - " <td>23.00</td>\n", - " <td>68.0</td>\n", - " <td>4500.0</td>\n", - " <td>33</td>\n", - " <td>38</td>\n", - " <td>13845.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>193</th>\n", - " <td>0</td>\n", - " <td>122.0</td>\n", - " <td>volkswagen</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>wagon</td>\n", - " <td>fwd</td>\n", - " <td>front</td>\n", - " <td>100.4</td>\n", - " <td>...</td>\n", - " <td>109</td>\n", - " <td>mpfi</td>\n", - " <td>3.19</td>\n", - " <td>3.40</td>\n", - " <td>9.00</td>\n", - " <td>88.0</td>\n", - " <td>5500.0</td>\n", - " <td>25</td>\n", - " <td>31</td>\n", - " <td>12290.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>194</th>\n", - " <td>-2</td>\n", - " <td>103.0</td>\n", - " <td>volvo</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>sedan</td>\n", - " <td>rwd</td>\n", - " <td>front</td>\n", - " <td>104.3</td>\n", - " <td>...</td>\n", - " <td>141</td>\n", - " <td>mpfi</td>\n", - " <td>3.78</td>\n", - " <td>3.15</td>\n", - " <td>9.50</td>\n", - " <td>114.0</td>\n", - " <td>5400.0</td>\n", - " <td>23</td>\n", - " <td>28</td>\n", - " <td>12940.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>195</th>\n", - " <td>-1</td>\n", - " <td>74.0</td>\n", - " <td>volvo</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>wagon</td>\n", - " <td>rwd</td>\n", - " <td>front</td>\n", - " <td>104.3</td>\n", - " <td>...</td>\n", - " <td>141</td>\n", - " <td>mpfi</td>\n", - " <td>3.78</td>\n", - " <td>3.15</td>\n", - " <td>9.50</td>\n", - " <td>114.0</td>\n", - " <td>5400.0</td>\n", - " <td>23</td>\n", - " <td>28</td>\n", - " <td>13415.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>196</th>\n", - " <td>-2</td>\n", - " <td>103.0</td>\n", - " <td>volvo</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>sedan</td>\n", - " <td>rwd</td>\n", - " <td>front</td>\n", - " <td>104.3</td>\n", - " <td>...</td>\n", - " <td>141</td>\n", - " <td>mpfi</td>\n", - " <td>3.78</td>\n", - " <td>3.15</td>\n", - " <td>9.50</td>\n", - " <td>114.0</td>\n", - " <td>5400.0</td>\n", - " <td>24</td>\n", - " <td>28</td>\n", - " <td>15985.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>197</th>\n", - " <td>-1</td>\n", - " <td>74.0</td>\n", - " <td>volvo</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>wagon</td>\n", - " <td>rwd</td>\n", - " <td>front</td>\n", - " <td>104.3</td>\n", - " <td>...</td>\n", - " <td>141</td>\n", - " <td>mpfi</td>\n", - " <td>3.78</td>\n", - " <td>3.15</td>\n", - " <td>9.50</td>\n", - " <td>114.0</td>\n", - " <td>5400.0</td>\n", - " <td>24</td>\n", - " <td>28</td>\n", - " <td>16515.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>198</th>\n", - " <td>-2</td>\n", - " <td>103.0</td>\n", - " <td>volvo</td>\n", - " <td>gas</td>\n", - " <td>turbo</td>\n", - " <td>four</td>\n", - " <td>sedan</td>\n", - " <td>rwd</td>\n", - " <td>front</td>\n", - " <td>104.3</td>\n", - " <td>...</td>\n", - " <td>130</td>\n", - " <td>mpfi</td>\n", - " <td>3.62</td>\n", - " <td>3.15</td>\n", - " <td>7.50</td>\n", - " <td>162.0</td>\n", - " <td>5100.0</td>\n", - " <td>17</td>\n", - " <td>22</td>\n", - " <td>18420.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>199</th>\n", - " <td>-1</td>\n", - " <td>74.0</td>\n", - " <td>volvo</td>\n", - " <td>gas</td>\n", - " <td>turbo</td>\n", - " <td>four</td>\n", - " <td>wagon</td>\n", - " <td>rwd</td>\n", - " <td>front</td>\n", - " <td>104.3</td>\n", - " <td>...</td>\n", - " <td>130</td>\n", - " <td>mpfi</td>\n", - " <td>3.62</td>\n", - " <td>3.15</td>\n", - " <td>7.50</td>\n", - " <td>162.0</td>\n", - " <td>5100.0</td>\n", - " <td>17</td>\n", - " <td>22</td>\n", - " <td>18950.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>200</th>\n", - " <td>-1</td>\n", - " <td>95.0</td>\n", - " <td>volvo</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>sedan</td>\n", - " <td>rwd</td>\n", - " <td>front</td>\n", - " <td>109.1</td>\n", - " <td>...</td>\n", - " <td>141</td>\n", - " <td>mpfi</td>\n", - " <td>3.78</td>\n", - " <td>3.15</td>\n", - " <td>9.50</td>\n", - " <td>114.0</td>\n", - " <td>5400.0</td>\n", - " <td>23</td>\n", - " <td>28</td>\n", - " <td>16845.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>201</th>\n", - " <td>-1</td>\n", - " <td>95.0</td>\n", - " <td>volvo</td>\n", - " <td>gas</td>\n", - " <td>turbo</td>\n", - " <td>four</td>\n", - " <td>sedan</td>\n", - " <td>rwd</td>\n", - " <td>front</td>\n", - " <td>109.1</td>\n", - " <td>...</td>\n", - " <td>141</td>\n", - " <td>mpfi</td>\n", - " <td>3.78</td>\n", - " <td>3.15</td>\n", - " <td>8.70</td>\n", - " <td>160.0</td>\n", - " <td>5300.0</td>\n", - " <td>19</td>\n", - " <td>25</td>\n", - " <td>19045.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>202</th>\n", - " <td>-1</td>\n", - " <td>95.0</td>\n", - " <td>volvo</td>\n", - " <td>gas</td>\n", - " <td>std</td>\n", - " <td>four</td>\n", - " <td>sedan</td>\n", - " <td>rwd</td>\n", - " <td>front</td>\n", - " <td>109.1</td>\n", - " <td>...</td>\n", - " <td>173</td>\n", - " <td>mpfi</td>\n", - " <td>3.58</td>\n", - " <td>2.87</td>\n", - " <td>8.80</td>\n", - " <td>134.0</td>\n", - " <td>5500.0</td>\n", - " <td>18</td>\n", - " <td>23</td>\n", - " <td>21485.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>203</th>\n", - " <td>-1</td>\n", - " <td>95.0</td>\n", - " <td>volvo</td>\n", - " <td>diesel</td>\n", - " <td>turbo</td>\n", - " <td>four</td>\n", - " <td>sedan</td>\n", - " <td>rwd</td>\n", - " <td>front</td>\n", - " <td>109.1</td>\n", - " <td>...</td>\n", - " <td>145</td>\n", - " <td>idi</td>\n", - " <td>3.01</td>\n", - " <td>3.40</td>\n", - " <td>23.00</td>\n", - " <td>106.0</td>\n", - " <td>4800.0</td>\n", - " <td>26</td>\n", - " <td>27</td>\n", - " <td>22470.000000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>204</th>\n", - " <td>-1</td>\n", - " <td>95.0</td>\n", - " <td>volvo</td>\n", - " <td>gas</td>\n", - " <td>turbo</td>\n", - " <td>four</td>\n", - " <td>sedan</td>\n", - " <td>rwd</td>\n", - " <td>front</td>\n", - " <td>109999.1</td>\n", - " <td>...</td>\n", - " <td>141</td>\n", - " <td>mpfi</td>\n", - " <td>3.78</td>\n", - " <td>3.15</td>\n", - " <td>9.50</td>\n", - " <td>114.0</td>\n", - " <td>5400.0</td>\n", - " <td>19</td>\n", - " <td>25</td>\n", - " <td>22625.000000</td>\n", - " </tr>\n", - " </tbody>\n", - "</table>\n", - "<p>203 rows × 26 columns</p>\n", - "</div>" - ], "text/plain": [ - " symboling normalized-losses make fuel-type aspiration \\\n", - "0 3 122.0 alfa-romero gas std \n", - "1 3 122.0 alfa-romero gas std \n", - "2 1 122.0 alfa-romero gas std \n", - "3 2 164.0 audi gas std \n", - "4 2 164.0 audi gas std \n", - "5 2 122.0 audi gas std \n", - "6 1 158.0 audi gas std \n", - "7 1 122.0 audi gas std \n", - "8 1 158.0 audi gas turbo \n", - "9 0 122.0 audi gas turbo \n", - "10 2 192.0 bmw gas std \n", - "11 0 192.0 bmw gas std \n", - "12 0 188.0 bmw gas std \n", - "13 0 188.0 bmw gas std \n", - "14 1 122.0 bmw gas std \n", - "15 0 122.0 bmw gas std \n", - "16 0 122.0 bmw gas std \n", - "17 0 122.0 bmw gas std \n", - "18 2 121.0 chevrolet gas std \n", - "19 1 98.0 chevrolet gas std \n", - "20 0 81.0 chevrolet gas std \n", - "21 1 118.0 dodge gas std \n", - "22 1 118.0 dodge gas std \n", - "23 1 118.0 dodge gas turbo \n", - "24 1 148.0 dodge gas std \n", - "25 1 148.0 dodge gas std \n", - "26 1 148.0 dodge gas std \n", - "28 -1 110.0 dodge gas std \n", - "29 3 145.0 dodge gas turbo \n", - "30 2 137.0 honda gas std \n", - ".. ... ... ... ... ... \n", - "175 -1 65.0 toyota gas std \n", - "176 -1 65.0 toyota gas std \n", - "177 -1 65.0 toyota gas std \n", - "178 3 197.0 toyota gas std \n", - "179 3 197.0 toyota gas std \n", - "180 -1 90.0 toyota gas std \n", - "181 -1 122.0 toyota gas std \n", - "182 2 122.0 volkswagen diesel std \n", - "183 2 122.0 volkswagen gas std \n", - "184 2 94.0 volkswagen diesel std \n", - "185 2 94.0 volkswagen gas std \n", - "186 2 94.0 volkswagen gas std \n", - "187 2 94.0 volkswagen diesel turbo \n", - "188 2 94.0 volkswagen gas std \n", - "189 3 122.0 volkswagen gas std \n", - "190 3 256.0 volkswagen gas std \n", - "191 0 122.0 volkswagen gas std \n", - "192 0 122.0 volkswagen diesel turbo \n", - "193 0 122.0 volkswagen gas std \n", - "194 -2 103.0 volvo gas std \n", - "195 -1 74.0 volvo gas std \n", - "196 -2 103.0 volvo gas std \n", - "197 -1 74.0 volvo gas std \n", - "198 -2 103.0 volvo gas turbo \n", - "199 -1 74.0 volvo gas turbo \n", - "200 -1 95.0 volvo gas std \n", - "201 -1 95.0 volvo gas turbo \n", - "202 -1 95.0 volvo gas std \n", - "203 -1 95.0 volvo diesel turbo \n", - "204 -1 95.0 volvo gas turbo \n", - "\n", - " num-of-doors body-style drive-wheels engine-location wheel-base \\\n", - "0 two convertible rwd front 88.6 \n", - "1 two convertible rwd front 88.6 \n", - "2 two hatchback rwd front 94.5 \n", - "3 four sedan fwd front 99.8 \n", - "4 four sedan 4wd front 99.4 \n", - "5 two sedan fwd front 99.8 \n", - "6 four sedan fwd front 105.8 \n", - "7 four wagon fwd front 105.8 \n", - "8 four sedan fwd front 105.8 \n", - "9 two hatchback 4wd front 99.5 \n", - "10 two sedan rwd front 101.2 \n", - "11 four sedan rwd front 101.2 \n", - "12 two sedan rwd front 101.2 \n", - "13 four sedan rwd front 101.2 \n", - "14 four sedan rwd front 103.5 \n", - "15 four sedan rwd front 103.5 \n", - "16 two sedan rwd front 103.5 \n", - "17 four sedan rwd front 110.0 \n", - "18 two hatchback fwd front 88.4 \n", - "19 two hatchback fwd front 94.5 \n", - "20 four sedan fwd front 94.5 \n", - "21 two hatchback fwd front 93.7 \n", - "22 two hatchback fwd front 93.7 \n", - "23 two hatchback fwd front 93.7 \n", - "24 four hatchback fwd front 93.7 \n", - "25 four sedan fwd front 93.7 \n", - "26 four sedan fwd front 93.7 \n", - "28 four wagon fwd front 103.3 \n", - "29 two hatchback fwd front 95.9 \n", - "30 two hatchback fwd front 86.6 \n", - ".. ... ... ... ... ... \n", - "175 four hatchback fwd front 102.4 \n", - "176 four sedan fwd front 102.4 \n", - "177 four hatchback fwd front 102.4 \n", - "178 two hatchback rwd front 102.9 \n", - "179 two hatchback rwd front 102.9 \n", - "180 four sedan rwd front 104.5 \n", - "181 four wagon rwd front 104.5 \n", - "182 two sedan fwd front 97.3 \n", - "183 two sedan fwd front 97.3 \n", - "184 four sedan fwd front 97.3 \n", - "185 four sedan fwd front 97.3 \n", - "186 four sedan fwd front 97.3 \n", - "187 four sedan fwd front 97.3 \n", - "188 four sedan fwd front 97.3 \n", - "189 two convertible fwd front 94.5 \n", - "190 two hatchback fwd front 94.5 \n", - "191 four sedan fwd front 100.4 \n", - "192 four sedan fwd front 100.4 \n", - "193 four wagon fwd front 100.4 \n", - "194 four sedan rwd front 104.3 \n", - "195 four wagon rwd front 104.3 \n", - "196 four sedan rwd front 104.3 \n", - "197 four wagon rwd front 104.3 \n", - "198 four sedan rwd front 104.3 \n", - "199 four wagon rwd front 104.3 \n", - "200 four sedan rwd front 109.1 \n", - "201 four sedan rwd front 109.1 \n", - "202 four sedan rwd front 109.1 \n", - "203 four sedan rwd front 109.1 \n", - "204 four sedan rwd front 109999.1 \n", - "\n", - " ... engine-size fuel-system bore stroke compression-ratio \\\n", - "0 ... 130 mpfi 3.47 2.68 9.00 \n", - "1 ... 130 mpfi 3.47 2.68 9.00 \n", - "2 ... 152 mpfi 2.68 3.47 9.00 \n", - "3 ... 109 mpfi 3.19 3.40 10.00 \n", - "4 ... 136 mpfi 3.19 3.40 8.00 \n", - "5 ... 136 mpfi 3.19 3.40 8.50 \n", - "6 ... 136 mpfi 3.19 3.40 8.50 \n", - "7 ... 136 mpfi 3.19 3.40 8.50 \n", - "8 ... 131 mpfi 3.13 3.40 8.30 \n", - "9 ... 131 mpfi 3.13 3.40 7.00 \n", - "10 ... 108 mpfi 3.50 2.80 8.80 \n", - "11 ... 108 mpfi 3.50 2.80 8.80 \n", - "12 ... 164 mpfi 3.31 3.19 9.00 \n", - "13 ... 164 mpfi 3.31 3.19 9.00 \n", - "14 ... 164 mpfi 3.31 3.19 9.00 \n", - "15 ... 209 mpfi 3.62 3.39 8.00 \n", - "16 ... 209 mpfi 3.62 3.39 8.00 \n", - "17 ... 209 mpfi 3.62 3.39 8.00 \n", - "18 ... 61 2bbl 2.91 3.03 9.50 \n", - "19 ... 90 2bbl 3.03 3.11 9.60 \n", - "20 ... 90 2bbl 3.03 3.11 9.60 \n", - "21 ... 90 2bbl 2.97 3.23 9.41 \n", - "22 ... 90 2bbl 2.97 3.23 9.40 \n", - "23 ... 98 mpfi 3.03 3.39 7.60 \n", - "24 ... 90 2bbl 2.97 3.23 9.40 \n", - "25 ... 90 2bbl 2.97 3.23 9.40 \n", - "26 ... 90 2bbl 2.97 3.23 9.40 \n", - "28 ... 122 2bbl 3.34 3.46 8.50 \n", - "29 ... 156 mfi 3.60 3.90 7.00 \n", - "30 ... 92 1bbl 2.91 3.41 9.60 \n", - ".. ... ... ... ... ... ... \n", - "175 ... 122 mpfi 3.31 3.54 8.70 \n", - "176 ... 122 mpfi 3.31 3.54 8.70 \n", - "177 ... 122 mpfi 3.31 3.54 8.70 \n", - "178 ... 171 mpfi 3.27 3.35 9.30 \n", - "179 ... 171 mpfi 3.27 3.35 9.30 \n", - "180 ... 171 mpfi 3.27 3.35 9.20 \n", - "181 ... 161 mpfi 3.27 3.35 9.20 \n", - "182 ... 97 idi 3.01 3.40 23.00 \n", - "183 ... 109 mpfi 3.19 3.40 9.00 \n", - "184 ... 97 idi 3.01 3.40 23.00 \n", - "185 ... 109 mpfi 3.19 3.40 9.00 \n", - "186 ... 109 mpfi 3.19 3.40 9.00 \n", - "187 ... 97 idi 3.01 3.40 23.00 \n", - "188 ... 109 mpfi 3.19 3.40 10.00 \n", - "189 ... 109 mpfi 3.19 3.40 8.50 \n", - "190 ... 109 mpfi 3.19 3.40 8.50 \n", - "191 ... 136 mpfi 3.19 3.40 8.50 \n", - "192 ... 97 idi 3.01 3.40 23.00 \n", - "193 ... 109 mpfi 3.19 3.40 9.00 \n", - "194 ... 141 mpfi 3.78 3.15 9.50 \n", - "195 ... 141 mpfi 3.78 3.15 9.50 \n", - "196 ... 141 mpfi 3.78 3.15 9.50 \n", - "197 ... 141 mpfi 3.78 3.15 9.50 \n", - "198 ... 130 mpfi 3.62 3.15 7.50 \n", - "199 ... 130 mpfi 3.62 3.15 7.50 \n", - "200 ... 141 mpfi 3.78 3.15 9.50 \n", - "201 ... 141 mpfi 3.78 3.15 8.70 \n", - "202 ... 173 mpfi 3.58 2.87 8.80 \n", - "203 ... 145 idi 3.01 3.40 23.00 \n", - "204 ... 141 mpfi 3.78 3.15 9.50 \n", - "\n", - " horsepower peak-rpm city-mpg highway-mpg price \n", - "0 111.0 5000.0 21 27 13495.000000 \n", - "1 111.0 5000.0 21 27 16500.000000 \n", - "2 154.0 5000.0 19 26 16500.000000 \n", - "3 102.0 5500.0 24 30 13950.000000 \n", - "4 115.0 5500.0 18 22 17450.000000 \n", - "5 110.0 5500.0 19 25 15250.000000 \n", - "6 110.0 5500.0 19 25 17710.000000 \n", - "7 110.0 5500.0 19 25 18920.000000 \n", - "8 140.0 5500.0 17 20 23875.000000 \n", - "9 160.0 5500.0 16 22 13207.129353 \n", - "10 101.0 5800.0 23 29 16430.000000 \n", - "11 101.0 5800.0 23 29 16925.000000 \n", - "12 121.0 4250.0 21 28 20970.000000 \n", - "13 121.0 4250.0 21 28 21105.000000 \n", - "14 121.0 4250.0 20 25 24565.000000 \n", - "15 182.0 5400.0 16 22 30760.000000 \n", - "16 182.0 5400.0 16 22 41315.000000 \n", - "17 182.0 5400.0 15 20 36880.000000 \n", - "18 48.0 5100.0 47 53 5151.000000 \n", - "19 70.0 5400.0 38 43 6295.000000 \n", - "20 70.0 5400.0 38 43 6575.000000 \n", - "21 68.0 5500.0 37 41 5572.000000 \n", - "22 68.0 5500.0 31 38 6377.000000 \n", - "23 102.0 5500.0 24 30 7957.000000 \n", - "24 68.0 5500.0 31 38 6229.000000 \n", - "25 68.0 5500.0 31 38 6692.000000 \n", - "26 68.0 5500.0 31 38 7609.000000 \n", - "28 88.0 5000.0 24 30 8921.000000 \n", - "29 145.0 5000.0 19 24 12964.000000 \n", - "30 58.0 4800.0 49 54 6479.000000 \n", - ".. ... ... ... ... ... \n", - "175 92.0 4200.0 27 32 9988.000000 \n", - "176 92.0 4200.0 27 32 10898.000000 \n", - "177 92.0 4200.0 27 32 11248.000000 \n", - "178 161.0 5200.0 20 24 16558.000000 \n", - "179 161.0 5200.0 19 24 15998.000000 \n", - "180 156.0 5200.0 20 24 15690.000000 \n", - "181 156.0 5200.0 19 24 15750.000000 \n", - "182 52.0 4800.0 37 46 7775.000000 \n", - "183 85.0 5250.0 27 34 7975.000000 \n", - "184 52.0 4800.0 37 46 7995.000000 \n", - "185 85.0 5250.0 27 34 8195.000000 \n", - "186 85.0 5250.0 27 34 8495.000000 \n", - "187 68.0 4500.0 37 42 9495.000000 \n", - "188 100.0 5500.0 26 32 9995.000000 \n", - "189 90.0 5500.0 24 29 11595.000000 \n", - "190 90.0 5500.0 24 29 9980.000000 \n", - "191 110.0 5500.0 19 24 13295.000000 \n", - "192 68.0 4500.0 33 38 13845.000000 \n", - "193 88.0 5500.0 25 31 12290.000000 \n", - "194 114.0 5400.0 23 28 12940.000000 \n", - "195 114.0 5400.0 23 28 13415.000000 \n", - "196 114.0 5400.0 24 28 15985.000000 \n", - "197 114.0 5400.0 24 28 16515.000000 \n", - "198 162.0 5100.0 17 22 18420.000000 \n", - "199 162.0 5100.0 17 22 18950.000000 \n", - "200 114.0 5400.0 23 28 16845.000000 \n", - "201 160.0 5300.0 19 25 19045.000000 \n", - "202 134.0 5500.0 18 23 21485.000000 \n", - "203 106.0 4800.0 26 27 22470.000000 \n", - "204 114.0 5400.0 19 25 22625.000000 \n", - "\n", - "[203 rows x 26 columns]" + "symboling 205\n", + "normalized-losses 205\n", + "make 205\n", + "fuel-type 205\n", + "aspiration 205\n", + "num-of-doors 205\n", + "body-style 205\n", + "drive-wheels 205\n", + "engine-location 205\n", + "wheel-base 205\n", + "length 205\n", + "width 205\n", + "height 205\n", + "curb-weight 205\n", + "engine-type 205\n", + "num-of-cylinders 205\n", + "engine-size 205\n", + "fuel-system 205\n", + "bore 205\n", + "stroke 205\n", + "compression-ratio 205\n", + "horsepower 205\n", + "peak-rpm 205\n", + "city-mpg 205\n", + "highway-mpg 205\n", + "price 205\n", + "dtype: int64" ] }, - "execution_count": 37, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } @@ -5377,13 +3639,15 @@ "#2 fill with mean then drop NaN\n", "auto_mean = pd.read_csv('automobile.csv', na_values=[\"?\"])\n", "auto_mean = auto_mean.fillna(auto_mean.mean())\n", - "auto_mean = auto_mean.dropna()\n", - "auto_mean" + "mode_num_door = auto_mean['num-of-doors'].mode()\n", + "auto_mean = auto_mean.fillna(value={'num-of-doors': mode_num_door[0]})\n", + "#auto_mean = auto_mean.dropna()\n", + "auto_mean.count()" ] }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 6, "metadata": { "scrolled": true }, @@ -5420,7 +3684,7 @@ "dtype: int64" ] }, - "execution_count": 33, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -5434,7 +3698,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 7, "metadata": { "scrolled": true }, @@ -7209,7 +5473,7 @@ "[205 rows x 26 columns]" ] }, - "execution_count": 30, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -7222,14 +5486,14 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAADuCAYAAADxyZqNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAGfpJREFUeJzt3X+QVeWd5/H3h25UsjMO0HYoFsjgDOwYohuiPUiViZtVwMaJ4mxFV2d36M1a27MGlVTNzqipqTLjj6rkj4kjVsJMJzI2s5lBzGRGYoHYqFkzW1FpRgIipujVJDaw0DZozOCSAN/94zztXJrbP+g+p09f+LyqbvV9vuc55z4nFf343HPueRQRmJmZ5WFC2QMwM7Mzh0PFzMxy41AxM7PcOFTMzCw3DhUzM8uNQ8XMzHLjUDEzs9w4VMzMLDcOFTMzy0192QMYaxdccEHMnj277GGYmdWUbdu2vR0RjUP1O+tCZfbs2XR2dpY9DDOzmiLpJ8Pp56+/zMwsNw4VMzPLjUPFzMxy41AxM7PcOFTMxoHe3l7uvPNOent7yx6K2ag4VMzGgfb2dnbu3MnatWvLHorZqDhUzErW29vL008/TUTw9NNPe7ZiNa3wUJFUJ+kVSU+l9mOS3pS0Pb3mp7okrZLUJWmHpEsrjtEiaU96tVTUL5O0M+2zSpKKPh+zvLW3t3PixAkAjh8/7tmK1bSxmKmsBHb3q/1RRMxPr+2pthSYm16twGoASVOBe4HLgQXAvZKmpH1Wp759+zUXeSJmRdiyZQvHjh0D4NixY3R0dJQ8IrORKzRUJM0Efgf45jC6LwPWRuZFYLKk6cA1QEdEHIqIw0AH0Jy2nR8RP4iIANYCNxRzJmbFWbRoEfX12cMt6uvrWbx4cckjMhu5omcqfw78MXCiX/3B9BXXQ5LOTbUZwFsVfbpTbbB6d5X6KSS1SuqU1NnT0zPikzErQktLCxMmZP8o1tXVsXz58pJHZDZyhYWKpM8AByNiW79N9wAXAb8NTAXu6tulymFiBPVTixFtEdEUEU2NjUM+D81sTDU0NNDc3IwkmpubaWhoKHtIZiNW5EzlCuB6ST8G1gFXSfqfEbE/fcV1FPgrsuskkM00ZlXsPxPYN0R9ZpW6Wc1paWnhkksu8SzFal5hoRIR90TEzIiYDdwMPBcR/zldCyHdqXUD8GraZQOwPN0FthB4NyL2A5uBJZKmpAv0S4DNadt7khamYy0HnizqfMyK1NDQwKpVqzxLsZpXxqPvvyWpkezrq+3Af0/1jcC1QBdwBPgcQEQcknQ/sDX1uy8iDqX3twGPAZOATellZmYlUXbj1NmjqakpvJ6KmdnpkbQtIpqG6udf1JuZWW4cKmZmlhuHipmZ5cahYmZmuXGomJlZbhwqZmaWG4eKmZnlxqFiZma5caiYjQNeo97OFA4Vs3HAa9TbmcKhYlay3t5eNm3aRESwadMmz1aspjlUzErW3t7+wXLCv/zlLz1bsZrmUDErWUdHB30Pdo0InnnmmZJHZDZyDhWzkk2bNm3QtlktcaiYlezAgQODts1qSeGhIqlO0iuSnkrtCyW9JGmPpMclnZPq56Z2V9o+u+IY96T6jyRdU1FvTrUuSXcXfS5mRVi8eDHZ4qUgiSVLlpQ8IrORG4uZykpgd0X7K8BDETEXOAzcmuq3AocjYg7wUOqHpHlkyxF/DGgGvp6Cqg74GrAUmAfckvqa1ZSWlhYmTpwIwMSJE71OvdW0QkNF0kzgd4BvpraAq4Bvpy7tZOvUAyxLbdL2q1P/ZcC6iDgaEW+SLTe8IL26IuKNiPgFsC71NaspDQ0NNDc3I4mlS5d6nXqraUXPVP4c+GPgRGo3AO9ExLHU7gZmpPczgLcA0vZ3U/8P6v32Gah+Ckmtkjoldfb09Iz2nMxy19LSwiWXXOJZitW8wkJF0meAgxGxrbJcpWsMse1066cWI9oioikimhobGwcZtVk5GhoaWLVqlWcpVvPqCzz2FcD1kq4FzgPOJ5u5TJZUn2YjM4F9qX83MAvollQP/BpwqKLep3KfgepmZlaCwmYqEXFPRMyMiNlkF9qfi4j/BDwPfDZ1awGeTO83pDZp+3OR/SJsA3BzujvsQmAu8DKwFZib7iY7J33GhqLOx8zMhlbkTGUgdwHrJD0AvAI8muqPAn8tqYtshnIzQETskrQeeA04BqyIiOMAkm4HNgN1wJqI2DWmZ2JmZidR3+MhzhZNTU3R2dlZ9jDMzGqKpG0R0TRUP/+i3szMcuNQMTOz3DhUzMwsNw4VMzPLjUPFzMxy41AxGwd6e3u58847vZSw1TyHitk40NbWxo4dO2hrayt7KGaj4lAxK1lvby8dHR1AtrSwZytWyxwqZiVra2vjxInsQd4nTpzwbMVqmkPFrGTPPvvsoG2zWuJQMStZ/0clnW2PTrIzi0PFrGRXX331Se1FixaVNBKz0XOomJXspptuOql94403ljQSs9FzqJiVbMOGk5cB+u53v1vSSMxGz6FiVrK+24n7PPPMMyWNxGz0HCpmJZs2bdqgbbNaUlioSDpP0suSfihpl6Q/TfXHJL0paXt6zU91SVolqUvSDkmXVhyrRdKe9GqpqF8maWfaZ5UkFXU+ZkU5cODAoG2zWlLkTOUocFVEfByYDzRLWpi2/VFEzE+v7am2lGz9+blAK7AaQNJU4F7gcmABcK+kKWmf1alv337NBZ6PWSE+9alPndS+8sorSxqJ2egVFiqR+XlqTkyvwW7AXwasTfu9CEyWNB24BuiIiEMRcRjoIAuo6cD5EfGDyG7sXwvcUNT5mBXFE2w7kxR6TUVSnaTtwEGyYHgpbXowfcX1kKRzU20G8FbF7t2pNli9u0q92jhaJXVK6uzp6Rn1eZnl6fvf//6gbbNaUmioRMTxiJgPzAQWSLoYuAe4CPhtYCpwV+pe7T/XYgT1auNoi4imiGhqbGw8zbMwK1b/HzsuXry4pJGYjd6Y3P0VEe8A3wOaI2J/+orrKPBXZNdJIJtpzKrYbSawb4j6zCp1s5py/fXXn9S+7rrrShqJ2egVefdXo6TJ6f0kYBHweroWQrpT6wbg1bTLBmB5ugtsIfBuROwHNgNLJE1JF+iXAJvTtvckLUzHWg48WdT5mBVl/fr1J7WfeOKJkkZiNnpFzlSmA89L2gFsJbum8hTwLUk7gZ3ABcADqf9G4A2gC/gG8HmAiDgE3J+OsRW4L9UAbgO+mfb5P8CmAs/HrBD9n0q8ZcuWkkZiNnr1RR04InYAn6hSv2qA/gGsGGDbGmBNlXoncPHoRmpWrv53f/luMKtl/kW9Wcn6P6W4f9usljhUzErW2trKhAnZP4oTJkygtbW15BGZjZxDxaxkDQ0NH/yK/sorr6ShoaHkEZmNnEPFzMxy41AxK1lvby8vvPACAC+88AK9vb0lj8hs5BwqZiVra2vjxIkTAJw4cYK2traSR2Q2cg4Vs5L1/51K/7ZZLXGomJUs+4nWwG2zWuJQMSvZJz/5yZPa/ddXMaslDhWzkp133nkntc8999wBepqNfw4Vs5J5PRU7kzhUzEq2aNEi6urqAKirq/N6KlbTHCpmJWtpafng4nxEsHz58pJHZDZyDhUzM8uNQ8WsZO3t7R887l4Sa9euLXlEZiNX5MqP50l6WdIPJe2S9KepfqGklyTtkfS4pHNS/dzU7krbZ1cc655U/5GkayrqzanWJenuos7FrEhbtmzh+PHjABw/fpyOjo6SR2Q2ckXOVI4CV0XEx4H5QHNaJvgrwEMRMRc4DNya+t8KHI6IOcBDqR+S5gE3Ax8DmoGvS6qTVAd8DVgKzANuSX3NasqiRYuor8/Wy6uvr/eFeqtphYVKZH6emhPTK4CrgG+nejvZOvUAy1KbtP3qtPb8MmBdRByNiDfJlg5ekF5dEfFGRPwCWJf6mtWUlpaWD9ZTqaur84V6q2mFXlNJM4rtwEGgg2wd+Xci4ljq0g3MSO9nAG8BpO3vAg2V9X77DFSvNo5WSZ2SOnt6evI4NbPcNDQ00NzcjCSam5u9norVtEJDJSKOR8R8YCbZzOKj1bqlv9UW5o4R1KuNoy0imiKiqbGxceiBm42xlpYWLrnkEs9SrObVj8WHRMQ7kr4HLAQmS6pPs5GZwL7UrRuYBXRLqgd+DThUUe9Tuc9AdbOa0tDQwKpVq8oehtmoFXn3V6Okyen9JGARsBt4Hvhs6tYCPJneb0ht0vbnIvtF2Abg5nR32IXAXOBlYCswN91Ndg7ZxfwNRZ2PmZkNrciZynSgPd2lNQFYHxFPSXoNWCfpAeAV4NHU/1HgryV1kc1QbgaIiF2S1gOvAceAFRFxHEDS7cBmoA5YExG7CjwfMzMbgs62tRuampqis7Oz7GGYmdUUSdsiommofv5FvZmZ5cahYmZmuRmTu7/MqnnkkUfo6uoqexjjwt69ewGYMaPqT63OOnPmzOGOO+4oexg2Ag4Vs3Hg/fffL3sIZrlwqFhp/F+i/2LlypUAPPzwwyWPxGx0fE3FzMxy41AxM7PcOFTMzCw3ww4VSb8uaVF6P0nSrxY3LDMzq0XDChVJ/41sjZO/TKWZwD8UNSgzM6tNw52prACuAH4GEBF7gA8XNSgzM6tNww2Vo2l1RQDSo+nProeGmZnZkIYbKv9L0heBSZIWA08A3y1uWGZmVouGGyp3Az3ATuAPgI3AnxQ1KDMzq03D/UX9JLL1Sr4B2drzqXakqIGZmVntGe5M5VmyEOkzCdiS/3DMzKyWDTdUzouIn/c10vsPDbaDpFmSnpe0W9IuSStT/UuS9kranl7XVuxzj6QuST+SdE1FvTnVuiTdXVG/UNJLkvZIejwtK2xmZiUZbqj8s6RL+xqSLgOGeqzqMeAPI+KjwEJghaR5adtDETE/vTamY84jW0L4Y0Az8HVJdemrtq8BS4F5wC0Vx/lKOtZc4DBw6zDPx8zMCjDcaypfAJ6QtC+1pwP/cbAdImI/sD+9f0/SbmCwxSKWAesi4ijwZlqrfkHa1hURbwBIWgcsS8e7Cvi91Kcd+BKwepjnZGZmORvWTCUitgIXAbcBnwc+GhHbhvshkmYDnwBeSqXbJe2QtEbSlFSbAbxVsVt3qg1UbwDeiYhj/erVPr9VUqekzp6enuEO28zMTtOgoSLpqvT3PwDXAf8GmAtcl2pDkvQrwN8BX4iIn5HNJH4TmE82k/mzvq5Vdo8R1E8tRrRFRFNENDU2Ng5n2GZmNgJDff3174DnyAKlvwC+M9jOkiaSBcq3IuI7ABFxoGL7N4CnUrMbmFWx+0yg7+u2avW3gcmS6tNspbK/mZmVYNBQiYh7JU0ANkXE+tM5sCQBjwK7I+KrFfXp6XoLwO8Cr6b3G4C/kfRV4F+TzYheJpuRzJV0IbCX7GL+70VESHoe+CywDmgBnjydMZqZWb6GvFAfESck3Q6cVqiQPYDy94Gdkran2hfJ7t6aTzbT+THZL/SJiF2S1gOvkd05tiIijgOkz98M1JH9CHNXOt5dwDpJDwCvkIWYmZmVZLh3f3VI+h/A48A/9xUj4tBAO0TEP1L9usfGQfZ5EHiwSn1jtf3SHWEL+tfNzKwcww2V/0o2s/h8v/pv5DscMzOrZcMNlXlkgfJJsnD5PvAXRQ3KzMxq03BDpZ1sga5VqX1Lqt1UxKDMzKw2DTdUfisiPl7Rfl7SD4sYkJmZ1a7hPvvrFUkL+xqSLgf+dzFDMjOzWjXcmcrlwHJJP03tjwC7Je0EIiL+bSGjMzOzmjLcUGkudBRmZnZGGFaoRMRPih6ImZnVvuFeUzEzMxuSQ8XMzHLjUDEzs9w4VMzMLDcOFTMzy41DxczMcuNQMTOz3BQWKpJmSXpe0m5JuyStTPWpkjok7Ul/p6S6JK2S1CVph6RLK47VkvrvkdRSUb9M0s60z6q02qSZmZWkyJnKMeAPI+KjwEJghaR5wN3AsxExF3g2tQGWki0hPBdoBVZDFkLAvWSPilkA3NsXRKlPa8V+/uW/mVmJCguViNgfEf+U3r8H7AZmAMvIHptP+ntDer8MWBuZF4HJkqYD1wAdEXEoIg4DHUBz2nZ+RPwgIgJYW3EsMzMrwZhcU5E0G/gE8BIwLSL2QxY8wIdTtxnAWxW7dafaYPXuKvVqn98qqVNSZ09Pz2hPx8zMBlB4qEj6FeDvgC9ExM8G61qlFiOon1qMaIuIpohoamxsHGrIZmY2QoWGiqSJZIHyrYj4TiofSF9dkf4eTPVuYFbF7jOBfUPUZ1apm5lZSYq8+0vAo8DuiPhqxaYNQN8dXC3AkxX15ekusIXAu+nrsc3AEklT0gX6JcDmtO09SQvTZy2vOJaZmZVguOupjMQVwO8DOyVtT7UvAl8G1ku6FfgpcGPathG4FugCjgCfA4iIQ5LuB7amfvdFxKH0/jbgMWASsCm9zMysJIWFSkT8I9WvewBcXaV/ACsGONYaYE2Veidw8SiGaWZmOfIv6s3MLDcOFTMzy41DxczMcuNQMTOz3DhUzMwsNw4VMzPLjUPFzMxy41AxM7PcOFTMzCw3DhUzM8uNQ8XMzHJT5AMlrYpHHnmErq6usodh40zf/ydWrlxZ8khsvJkzZw533HFH2cMYNofKGOvq6mL7q7s5/qGpZQ/FxpEJv8jWl9v2xoGSR2LjSd2RQ0N3GmccKiU4/qGpvH/RtWUPw8zGuUmvbyx7CKfN11TMzCw3DhUzM8tNkcsJr5F0UNKrFbUvSdoraXt6XVux7R5JXZJ+JOmainpzqnVJuruifqGklyTtkfS4pHOKOhczMxueImcqjwHNVeoPRcT89NoIIGkecDPwsbTP1yXVSaoDvgYsBeYBt6S+AF9Jx5oLHAZuLfBczMxsGAoLlYh4ARjurQvLgHURcTQi3iRbp35BenVFxBsR8QtgHbBMkoCrgG+n/duBG3I9ATMzO21lXFO5XdKO9PXYlFSbAbxV0ac71QaqNwDvRMSxfvWqJLVK6pTU2dPTk9d5mJlZP2MdKquB3wTmA/uBP0t1VekbI6hXFRFtEdEUEU2NjY2nN2IzMxu2Mf2dSkR88MsuSd8AnkrNbmBWRdeZwL70vlr9bWCypPo0W6nsb2ZmJRnTmYqk6RXN3wX67gzbANws6VxJFwJzgZeBrcDcdKfXOWQX8zdERADPA59N+7cAT47FOZiZ2cAKm6lI+lvg08AFkrqBe4FPS5pP9lXVj4E/AIiIXZLWA68Bx4AVEXE8Hed2YDNQB6yJiF3pI+4C1kl6AHgFeLSoczEzs+EpLFQi4pYq5QH/xR8RDwIPVqlvBE55VkFEvEF2d5iZmY0T/kW9mZnlxqFiZma5caiYmVluHCpmZpYbh4qZmeXGoWJmZrlxqJiZWW4cKmZmlhuHipmZ5cahYmZmuXGomJlZbhwqZmaWG4eKmZnlxqFiZma5caiYmVluilykaw3wGeBgRFycalOBx4HZZIt03RQRhyUJeBi4FjgC/JeI+Ke0TwvwJ+mwD0REe6pfBjwGTCJbb2VlWhFyXNu7dy91R95l0uunLBFjZnaSuiO97N17rOxhnJYiZyqPAc39ancDz0bEXODZ1AZYSraE8FygFVgNH4TQvcDlZAty3StpStpnderbt1//zzIzszFW5MqPL0ia3a+8jGyJYYB24HtkywIvA9ammcaLkian9ew/DXRExCEASR1As6TvAedHxA9SfS1wA7CpqPPJy4wZM/i/R+t5/6Jryx6KmY1zk17fyIwZ08oexmkZ62sq0yJiP0D6++FUnwG8VdGvO9UGq3dXqVclqVVSp6TOnp6eUZ+EmZlVN14u1KtKLUZQryoi2iKiKSKaGhsbRzhEMzMbyliHyoH0tRbp78FU7wZmVfSbCewboj6zSt3MzEo01qGyAWhJ71uAJyvqy5VZCLybvh7bDCyRNCVdoF8CbE7b3pO0MN05trziWGZmVpIibyn+W7IL7RdI6ia7i+vLwHpJtwI/BW5M3TeS3U7cRXZL8ecAIuKQpPuBranffX0X7YHb+JdbijdRAxfpzczOdEXe/XXLAJuurtI3gBUDHGcNsKZKvRO4eDRjNDOzfI2XC/VmZnYGcKiYmVluHCpmZpYbh4qZmeWmsAv1NrC6I4f8QEk7yYT/9zMATpx3fskjsfGk7sghoLYe0+JQGWNz5swpewg2DnV1vQfAnN+orX+BWNGm1dy/MxwqY+yOO+4oewg2Dq1cuRKAhx9+uOSRmI2Or6mYmVluHCpmZpYbh4qZmeXGoWJmZrlxqJiZWW4cKmZmlhuHipmZ5cahYmZmuXGomJlZbkoJFUk/lrRT0nZJnak2VVKHpD3p75RUl6RVkrok7ZB0acVxWlL/PZJaBvo8MzMbG2U+puXfR8TbFe27gWcj4suS7k7tu4ClwNz0uhxYDVwuaSrZEsVNQADbJG2IiMNjeRI2co888ghdXV1lD2Nc6Pvfoe9xLWe7OXPm+JFGNWo8ff21DGhP79uBGyrqayPzIjBZ0nTgGqAjIg6lIOkAmsd60GZ5mDRpEpMmTSp7GGajVtZMJYBnJAXwlxHRBkyLiP0AEbFf0odT3xnAWxX7dqfaQPVTSGoFWgE+8pGP5HkeNgr+L1GzM09ZoXJFROxLwdEh6fVB+qpKLQapn1rMQqsNoKmpqWofMzMbvVK+/oqIfenvQeDvgQXAgfS1FunvwdS9G5hVsftMYN8gdTMzK8mYh4qkfyXpV/veA0uAV4ENQN8dXC3Ak+n9BmB5ugtsIfBu+ppsM7BE0pR0p9iSVDMzs5KU8fXXNODvJfV9/t9ExNOStgLrJd0K/BS4MfXfCFwLdAFHgM8BRMQhSfcDW1O/+yLi0NidhpmZ9aeIs+sSQ1NTU3R2dpY9DDOzmiJpW0Q0DdVvPN1SbGZmNc6hYmZmuXGomJlZbs66ayqSeoCflD0OsyouAN4espdZOX49IhqH6nTWhYrZeCWpczgXQs3GM3/9ZWZmuXGomJlZbhwqZuNHW9kDMBstX1MxM7PceKZiZma5caiYmVluHCpmZpYbh4qZmeXGoWJmZrn5/wI8/AHN+it9AAAAAElFTkSuQmCC\n", "text/plain": [ - "<matplotlib.figure.Figure at 0x29379cb6860>" + "<matplotlib.figure.Figure at 0x1d481fb8208>" ] }, "metadata": {}, @@ -7237,10 +5501,239 @@ } ], "source": [ + "#3\n", "sns.boxplot(y='price', data=auto_mean)\n", "plt.show()" ] }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[13495.0,\n", + " 16500.0,\n", + " 16500.0,\n", + " 13950.0,\n", + " 17450.0,\n", + " 15250.0,\n", + " 17710.0,\n", + " 18920.0,\n", + " 23875.0,\n", + " 13207.129353233831,\n", + " 16430.0,\n", + " 16925.0,\n", + " 20970.0,\n", + " 21105.0,\n", + " 24565.0,\n", + " 5151.0,\n", + " 6295.0,\n", + " 6575.0,\n", + " 5572.0,\n", + " 6377.0,\n", + " 7957.0,\n", + " 6229.0,\n", + " 6692.0,\n", + " 7609.0,\n", + " 8921.0,\n", + " 12964.0,\n", + " 6479.0,\n", + " 6855.0,\n", + " 5399.0,\n", + " 6529.0,\n", + " 7129.0,\n", + " 7295.0,\n", + " 7295.0,\n", + " 7895.0,\n", + " 9095.0,\n", + " 8845.0,\n", + " 10295.0,\n", + " 12945.0,\n", + " 10345.0,\n", + " 6785.0,\n", + " 13207.129353233831,\n", + " 13207.129353233831,\n", + " 11048.0,\n", + " 5195.0,\n", + " 6095.0,\n", + " 6795.0,\n", + " 6695.0,\n", + " 7395.0,\n", + " 10945.0,\n", + " 11845.0,\n", + " 13645.0,\n", + " 15645.0,\n", + " 8845.0,\n", + " 8495.0,\n", + " 10595.0,\n", + " 10245.0,\n", + " 11245.0,\n", + " 18280.0,\n", + " 18344.0,\n", + " 25552.0,\n", + " 28248.0,\n", + " 28176.0,\n", + " 16503.0,\n", + " 5389.0,\n", + " 6189.0,\n", + " 6669.0,\n", + " 7689.0,\n", + " 9959.0,\n", + " 8499.0,\n", + " 12629.0,\n", + " 14869.0,\n", + " 14489.0,\n", + " 6989.0,\n", + " 8189.0,\n", + " 9279.0,\n", + " 9279.0,\n", + " 5499.0,\n", + " 7099.0,\n", + " 6649.0,\n", + " 6849.0,\n", + " 7349.0,\n", + " 7299.0,\n", + " 7799.0,\n", + " 7499.0,\n", + " 7999.0,\n", + " 8249.0,\n", + " 8949.0,\n", + " 9549.0,\n", + " 13499.0,\n", + " 14399.0,\n", + " 13499.0,\n", + " 17199.0,\n", + " 19699.0,\n", + " 18399.0,\n", + " 11900.0,\n", + " 13200.0,\n", + " 12440.0,\n", + " 13860.0,\n", + " 15580.0,\n", + " 16900.0,\n", + " 16695.0,\n", + " 17075.0,\n", + " 16630.0,\n", + " 17950.0,\n", + " 18150.0,\n", + " 5572.0,\n", + " 7957.0,\n", + " 6229.0,\n", + " 6692.0,\n", + " 7609.0,\n", + " 8921.0,\n", + " 12764.0,\n", + " 22018.0,\n", + " 13207.129353233831,\n", + " 9295.0,\n", + " 9895.0,\n", + " 11850.0,\n", + " 12170.0,\n", + " 15040.0,\n", + " 15510.0,\n", + " 18150.0,\n", + " 18620.0,\n", + " 5118.0,\n", + " 7053.0,\n", + " 7603.0,\n", + " 7126.0,\n", + " 7775.0,\n", + " 9960.0,\n", + " 9233.0,\n", + " 11259.0,\n", + " 7463.0,\n", + " 10198.0,\n", + " 8013.0,\n", + " 11694.0,\n", + " 5348.0,\n", + " 6338.0,\n", + " 6488.0,\n", + " 6918.0,\n", + " 7898.0,\n", + " 8778.0,\n", + " 6938.0,\n", + " 7198.0,\n", + " 7898.0,\n", + " 7788.0,\n", + " 7738.0,\n", + " 8358.0,\n", + " 9258.0,\n", + " 8058.0,\n", + " 8238.0,\n", + " 9298.0,\n", + " 9538.0,\n", + " 8449.0,\n", + " 9639.0,\n", + " 9989.0,\n", + " 11199.0,\n", + " 11549.0,\n", + " 17669.0,\n", + " 8948.0,\n", + " 10698.0,\n", + " 9988.0,\n", + " 10898.0,\n", + " 11248.0,\n", + " 16558.0,\n", + " 15998.0,\n", + " 15690.0,\n", + " 15750.0,\n", + " 7775.0,\n", + " 7975.0,\n", + " 7995.0,\n", + " 8195.0,\n", + " 8495.0,\n", + " 9495.0,\n", + " 9995.0,\n", + " 11595.0,\n", + " 9980.0,\n", + " 13295.0,\n", + " 13845.0,\n", + " 12290.0,\n", + " 12940.0,\n", + " 13415.0,\n", + " 15985.0,\n", + " 16515.0,\n", + " 18420.0,\n", + " 18950.0,\n", + " 16845.0,\n", + " 19045.0,\n", + " 21485.0,\n", + " 22470.0,\n", + " 22625.0]" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAADuCAYAAADSkstYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAADstJREFUeJzt3W2MnWWdx/Hvz1bdimtopbJkWrbsThNFX6BOoIlvXE1qwRdlE01gE2lcsjUGujXxBWhIMFISfKGmNEq2ro0lcWXJqqFZ63YbojEmogxKeLBseoJV+rBQtojEshrwvy/mHj3b67QznTP0zOj3k5ycc65z3WeuQ0i/cz/MTKoKSZL6vWrUC5AkLTzGQZLUMA6SpIZxkCQ1jIMkqWEcJEkN4yBJahgHSVLDOEiSGktHvYC5uuCCC2rNmjWjXoYkLSoPPfTQs1W1cqZ5izYOa9asYXJyctTLkKRFJcnPZzPPw0qSpIZxkCQ1jIMkqWEcJEkN4yDNo16vx/vf/356vd6olyINxThI82jbtm38+te/Ztu2baNeijQU4yDNk16vx6FDhwA4dOiQew9a1IyDNE9O3Vtw70GLmXGQ5sn0XsPpnkuLiXGQ5smpv87FX++ixcw4SPPklltuOeNzaTExDtI8GR8f//3ewpo1axgfHx/tgqQhGAdpHt1yyy2cd9557jVo0Vu0v5VVWojGx8f51re+NeplSENzz0GS1DAOkqSGcZAkNYyDJKlhHCRJDeMgSWoYB0lSwzhIkhrGQZLUMA6SpIZxkCQ1jIMkqWEcJEkN4yBJahgHSVLDOEiSGv6xHw1tx44d9Hq9US9jQThy5AgAY2NjI17JwjA+Ps6WLVtGvQzNgXGQ5tGLL7446iVI82LGOCRZDdwN/AXwO2BnVW1P8ingH4Dj3dRPVtXebptPANcDLwP/WFX7uvENwHZgCfDPVXVHN34JcA+wAvgx8KGq+u18fUi9svzO8A+2bt0KwPbt20e8Emk4sznn8BLw8ap6C7AOuCHJpd1rn6+qy7rbdBguBa4B3gpsAL6YZEmSJcAXgCuBS4Fr+97nM917rQWeYyoskqQRmTEOVXWsqn7cPX4BOACc6YDqRuCeqvpNVf0M6AGXd7deVT3Z7RXcA2xMEuA9wL912+8Grp7rB5IkDe+srlZKsgZ4O/DDbujGJI8k2ZVkeTc2BjzVt9nhbux0428EfllVL50yLkkakVnHIcnrga8DH6uqXwF3AX8NXAYcAz47PXXA5jWH8UFr2JxkMsnk8ePHB02RJM2DWcUhyauZCsNXq+obAFX1dFW9XFW/A77E1GEjmPrOf3Xf5quAo2cYfxY4P8nSU8YbVbWzqiaqamLlypWzWbokaQ5mjEN3TuDLwIGq+lzf+EV90/4WeKx7vAe4Jslru6uQ1gI/Ah4E1ia5JMlrmDppvaeqCvgO8IFu+03AfcN9LEnSMGbzcw7vAj4EPJrk4W7sk0xdbXQZU4eADgEfAaiqx5PcC/yUqSudbqiqlwGS3AjsY+pS1l1V9Xj3fjcB9yTZBvyEqRhJkkZkxjhU1fcZfF5g7xm2uR24fcD43kHbVdWT/OGwlCRpxPzdSpKkhnGQJDWMgySpYRwkSQ3jIElqGAdJUsM4SJIaxkGS1DAOkqSGcZAkNYyDJKlhHCRJDeMgSWoYB0lSwzhIkhrGQZLUMA6SpIZxkCQ1jIMkqWEcJEkN4yBJahgHSVLDOEiSGsZBktQwDpKkhnGQJDWMgySpYRwkSQ3jIElqGAdJUsM4SJIaxkGS1DAOkqSGcZAkNWaMQ5LVSb6T5ECSx5Ns7cZXJNmf5GB3v7wbT5I7k/SSPJLkHX3vtambfzDJpr7xdyZ5tNvmziR5JT6sJGl2ZrPn8BLw8ap6C7AOuCHJpcDNwP1VtRa4v3sOcCWwtrttBu6CqZgAtwJXAJcDt04HpZuzuW+7DcN/NEnSXM0Yh6o6VlU/7h6/ABwAxoCNwO5u2m7g6u7xRuDumvIAcH6Si4D3Afur6kRVPQfsBzZ0r72hqn5QVQXc3fdekqQROKtzDknWAG8HfghcWFXHYCogwJu6aWPAU32bHe7GzjR+eMD4oK+/Oclkksnjx4+fzdIlSWdh1nFI8nrg68DHqupXZ5o6YKzmMN4OVu2sqomqmli5cuVMS5YkzdGs4pDk1UyF4atV9Y1u+OnukBDd/TPd+GFgdd/mq4CjM4yvGjAuSRqR2VytFODLwIGq+lzfS3uA6SuONgH39Y1f1121tA54vjvstA9Yn2R5dyJ6PbCve+2FJOu6r3Vd33tJkkZg6SzmvAv4EPBokoe7sU8CdwD3Jrke+AXwwe61vcBVQA84CXwYoKpOJLkNeLCb9+mqOtE9/ijwFWAZ8O3uJkkakRnjUFXfZ/B5AYD3DphfwA2nea9dwK4B45PA22ZaiyTp3PAnpCVJDeMgSWoYB0lSwzhIkhrGQZLUMA6SpIZxkCQ1jIMkqWEcJEkN4yBJahgHSVLDOEiSGsZBktQwDpKkhnGQJDWMgySpYRwkSQ3jIElqGAdJUsM4SJIaxkGS1DAOkqSGcZAkNYyDJKlhHCRJDeMgSWoYB0lSwzhIkhrGQZLUMA6SpIZxkCQ1jIMkqWEcJEkN4yBJaswYhyS7kjyT5LG+sU8lOZLk4e52Vd9rn0jSS/JfSd7XN76hG+slublv/JIkP0xyMMm/JnnNfH5ASdLZm82ew1eADQPGP19Vl3W3vQBJLgWuAd7abfPFJEuSLAG+AFwJXApc280F+Ez3XmuB54Drh/lAkqThLZ1pQlV9L8maWb7fRuCeqvoN8LMkPeDy7rVeVT0JkOQeYGOSA8B7gL/r5uwGPgXcNdsPMCo7duyg1+uNehlaYKb/n9i6deuIV6KFZnx8nC1btox6GbM2YxzO4MYk1wGTwMer6jlgDHigb87hbgzgqVPGrwDeCPyyql4aML+RZDOwGeDiiy8eYunD6/V6PPzYAV5+3YqRrkMLy6t+WwA89OTTI16JFpIlJ0+Meglnba5xuAu4Daju/rPA3wMZMLcYfPiqzjB/oKraCewEmJiYOO28c+Xl163gxTdfNfNESX/Slj2xd9RLOGtzikNV/f7boiRfAv69e3oYWN03dRVwtHs8aPxZ4PwkS7u9h/75kqQRmdOlrEku6nv6t8D0lUx7gGuSvDbJJcBa4EfAg8Da7sqk1zB10npPVRXwHeAD3fabgPvmsiZJ0vyZcc8hydeAdwMXJDkM3Aq8O8llTB0COgR8BKCqHk9yL/BT4CXghqp6uXufG4F9wBJgV1U93n2Jm4B7kmwDfgJ8ed4+nSRpTmZztdK1A4ZP+w94Vd0O3D5gfC/QHHjrrmC6/NRxSdLo+BPSkqSGcZAkNYyDJKlhHCRJDeMgSWoYB0lSwzhIkhrGQZLUMA6SpIZxkCQ1jIMkqWEcJEkN4yBJahgHSVLDOEiSGsZBktQwDpKkhnGQJDWMgySpYRwkSQ3jIElqGAdJUsM4SJIaxkGS1DAOkqSGcZAkNYyDJKlhHCRJDeMgSWoYB0lSwzhIkhrGQZLUMA6SpIZxkCQ1ZoxDkl1JnknyWN/YiiT7kxzs7pd340lyZ5JekkeSvKNvm03d/INJNvWNvzPJo902dybJfH9ISdLZmc2ew1eADaeM3QzcX1Vrgfu75wBXAmu722bgLpiKCXArcAVwOXDrdFC6OZv7tjv1a0mSzrGlM02oqu8lWXPK8Ebg3d3j3cB3gZu68burqoAHkpyf5KJu7v6qOgGQZD+wIcl3gTdU1Q+68buBq4FvD/OhzoUjR46w5OTzLHti76iXImmBW3Lyfzhy5KVRL+OszPWcw4VVdQygu39TNz4GPNU373A3dqbxwwPGB0qyOclkksnjx4/PcemSpJnMuOdwlgadL6g5jA9UVTuBnQATExOnnXcujI2N8d+/WcqLb75qlMuQtAgse2IvY2MXjnoZZ2Wuew5Pd4eL6O6f6cYPA6v75q0Cjs4wvmrAuCRphOYahz3A9BVHm4D7+sav665aWgc83x122gesT7K8OxG9HtjXvfZCknXdVUrX9b2XJGlEZjyslORrTJ1QviDJYaauOroDuDfJ9cAvgA920/cCVwE94CTwYYCqOpHkNuDBbt6np09OAx9l6oqoZUydiF7wJ6Ml6Y/dbK5WuvY0L713wNwCbjjN++wCdg0YnwTeNtM6JEnnjj8hLUlqGAdJUsM4SJIaxkGS1DAOkqSGcZAkNYyDJKlhHCRJDeMgSWoYB0lSwzhIkhrGQZLUmO8/9vMnZcnJE/6ZUP0/r/rfXwHwuz97w4hXooVkyckTwOL6Yz/GYY7Gx8dHvQQtQL3eCwCM/9Xi+odAr7QLF92/GcZhjrZs2TLqJWgB2rp1KwDbt28f8Uqk4XjOQZLUMA6SpIZxkCQ1jIMkqWEcJEkN4yBJahgHSVLDOEiSGsZBktQwDpKkhnGQJDWMgySpYRwkSQ3jIElqGAdJUsM4SJIaxkGS1DAOkqTGUHFIcijJo0keTjLZja1Isj/Jwe5+eTeeJHcm6SV5JMk7+t5nUzf/YJJNw30kSdKw5uNvSP9NVT3b9/xm4P6quiPJzd3zm4ArgbXd7QrgLuCKJCuAW4EJoICHkuypqufmYW06B3bs2EGv1xv1MhaE6f8O039L+k/d+Pi4f299kXolDittBHZ3j3cDV/eN311THgDOT3IR8D5gf1Wd6IKwH9jwCqxLesUtW7aMZcuWjXoZ0tCG3XMo4D+TFPBPVbUTuLCqjgFU1bEkb+rmjgFP9W17uBs73XgjyWZgM8DFF1885NI1X/zOUPrjM2wc3lVVR7sA7E/yxBnmZsBYnWG8HZyKz06AiYmJgXMkScMb6rBSVR3t7p8BvglcDjzdHS6iu3+mm34YWN23+Srg6BnGJUkjMuc4JDkvyZ9PPwbWA48Be4DpK442Afd1j/cA13VXLa0Dnu8OP+0D1idZ3l3ZtL4bkySNyDCHlS4Evplk+n3+par+I8mDwL1Jrgd+AXywm78XuAroASeBDwNU1YkktwEPdvM+XVUnhliXJGlIqVqch+4nJiZqcnJy1MuQpEUlyUNVNTHTPH9CWpLUMA6SpIZxkCQ1Fu05hyTHgZ+Peh3SABcAz844SxqNv6yqlTNNWrRxkBaqJJOzOeEnLWQeVpIkNYyDJKlhHKT5t3PUC5CG5TkHSVLDPQdJUsM4SJIaxkGS1DAOkqSGcZAkNf4PVu7X93tsaYYAAAAASUVORK5CYII=\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x1d482f4cba8>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "price_kolom = auto_mean['price']\n", + "mean = price_kolom.mean()\n", + "std = price_kolom.std()\n", + "\n", + "batas_bawah = mean - 2 * std\n", + "batas_atas = mean + 2 * std\n", + "\n", + "final_price_without_outlier = [x for x in price_kolom if(x > batas_bawah)]\n", + "final_price_without_outlier = [x for x in final_price_without_outlier if(x < batas_atas)]\n", + "sns.boxplot(y=final_price_without_outlier)\n", + "final_price_without_outlier " + ] + }, { "cell_type": "code", "execution_count": null, diff --git a/Lab_dsa_3/Soal/Jawaban_Lab3_AriefTritomo_1506689061.pdf b/Lab_dsa_3/Soal/Jawaban_Lab3_AriefTritomo_1506689061.pdf new file mode 100644 index 0000000000000000000000000000000000000000..56eed3c454c0b6968c71f3d9e68e7a4217df6b79 Binary files /dev/null and b/Lab_dsa_3/Soal/Jawaban_Lab3_AriefTritomo_1506689061.pdf differ diff --git a/Lab_dsa_3/Soal/Tutorial_Lab3_AriefTritomo_1506689061.pdf b/Lab_dsa_3/Soal/Tutorial_Lab3_AriefTritomo_1506689061.pdf new file mode 100644 index 0000000000000000000000000000000000000000..559575d902dcf1d743933ad62238b3d1b07fcba9 Binary files /dev/null and b/Lab_dsa_3/Soal/Tutorial_Lab3_AriefTritomo_1506689061.pdf differ diff --git a/Lab_dsa_3/Soal/codejawaban.py b/Lab_dsa_3/Soal/codejawaban.py new file mode 100644 index 0000000000000000000000000000000000000000..e93efc0d1a41aba429bd9539b7bc91b5e5e03b16 --- /dev/null +++ b/Lab_dsa_3/Soal/codejawaban.py @@ -0,0 +1,140 @@ + +# coding: utf-8 + +# In[2]: + + +import numpy as np +import pandas as pd +import scipy.stats as stats +import matplotlib.pyplot as plt +import random +import math +import seaborn as sns + + +# In[3]: + + +#1 +auto = pd.read_csv('automobile.csv', na_values=["?"]) +auto.isnull().sum() + + +# In[4]: + + +#2 delete row +auto = auto.dropna() +auto + + +# In[5]: + + +#2 fill with mean then drop NaN +auto_mean = pd.read_csv('automobile.csv', na_values=["?"]) +auto_mean = auto_mean.fillna(auto_mean.mean()) +auto_mean = auto_mean.dropna() +auto_mean + + +# In[6]: + + +#2 fill with median +auto_median = pd.read_csv('automobile.csv', na_values=["?"]) +auto_median = auto_median.fillna(auto_median.median()) +auto_median.isnull().sum() + + +# In[7]: + + +#2 fill with mode +auto_mode = pd.read_csv('automobile.csv', na_values=["?"]) +auto_mode.fillna(auto_mode.mode()) + + +# In[8]: + + +#3 +sns.boxplot(y='price', data=auto_mean) +plt.show() + + +# In[9]: + + +#4 Handle Outlier +price_kolom = auto_mean['price'] +mean = price_kolom.mean() +std = price_kolom.std() + +batas_bawah = mean - 2 * std +batas_atas = mean + 2 * std + +final_price_without_outlier = [x for x in price_kolom if(x > batas_bawah)] +final_price_without_outlier = [x for x in final_price_without_outlier if(x < batas_atas)] +final_price_without_outlier + + +# In[23]: + + +#5 pearson +auto_mean.corr(method='pearson').style.format("{:.2}").background_gradient(cmap=plt.get_cmap('coolwarm'), axis=1) + + +# In[24]: + + +#5 spearman +auto_mean.corr(method="spearman").style.format("{:.2}").background_gradient(cmap=plt.get_cmap('coolwarm'), axis=1) + + +# In[80]: + + +#5 linear Regression +from sklearn.linear_model import LinearRegression +feature_cols = ['wheel-base','length','width','curb-weight','engine-size','horsepower','normalized-losses','height','stroke','bore'] +x = auto_mean[feature_cols] +y = auto_mean['price'] +linreg = LinearRegression() +linreg.fit(x,y) +print(feature_cols,linreg.intercept_) +print(feature_cols,linreg.coef_) + + +# In[56]: + + +from sklearn import metrics +y_pred = linreg.predict(x) +np.sqrt(metrics.mean_squared_error(y, y_pred)) + + +# In[33]: + + +# Logistic Regression +from sklearn.linear_model import LogisticRegression +from sklearn.cross_validation import train_test_split +logreg = LogisticRegression() +average_price = np.mean(auto_mean['price']) +temp = auto_mean['price'] >= average_price +feature_cols = ['wheel-base','length','width','curb-weight','engine-size','horsepower','normalized-losses','height','stroke','bore'] +x = auto_mean[feature_cols] +y = temp +X_train, X_test, y_train, y_test = train_test_split(x, y) +logreg.fit(X_train, y_train) +logreg.score(X_test, y_test) + + +# In[57]: + + +y_pred + diff --git a/lab_dsa_2/.ipynb_checkpoints/lab2_arief-checkpoint.ipynb b/lab_dsa_2/.ipynb_checkpoints/lab2_arief-checkpoint.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..a0b40a6651a736d0b0d217fa0dd3fb013511c1e5 --- /dev/null +++ b/lab_dsa_2/.ipynb_checkpoints/lab2_arief-checkpoint.ipynb @@ -0,0 +1,440 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import numpy as np\n", + "import pandas as pd\n", + "import scipy.stats as stats\n", + "import matplotlib.pyplot as plt\n", + "import random\n", + "import math" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "43.002372" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.random.seed(10)\n", + "population_ages1 = stats.poisson.rvs(loc=18, mu=35, size=150000)\n", + "population_ages2 = stats.poisson.rvs(loc=18, mu=10, size=100000)\n", + "population_ages = np.concatenate((population_ages1, population_ages2))\n", + "\n", + "population_ages.mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "42.388\n" + ] + }, + { + "data": { + "text/plain": [ + "0.614372000000003" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.random.seed(6)\n", + "sample_ages = np.random.choice(a= population_ages, size=500)\n", + "print(sample_ages.mean())\n", + "population_ages.mean() - sample_ages.mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[7, 1, 14, 3, 12]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#optional_blue\n", + "c = list(range(0, 15))\n", + "random.sample(c, 5)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>City</th>\n", + " <th>Colors Reported</th>\n", + " <th>Shape Reported</th>\n", + " <th>State</th>\n", + " <th>Time</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>833</th>\n", + " <td>Oklahoma City</td>\n", + " <td>NaN</td>\n", + " <td>LIGHT</td>\n", + " <td>OK</td>\n", + " <td>7/15/1963 22:00</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15130</th>\n", + " <td>Lowell</td>\n", + " <td>NaN</td>\n", + " <td>RECTANGLE</td>\n", + " <td>IN</td>\n", + " <td>11/16/1999 18:00</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8081</th>\n", + " <td>Lebanon</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>OR</td>\n", + " <td>5/6/1995 23:30</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " City Colors Reported Shape Reported State Time\n", + "833 Oklahoma City NaN LIGHT OK 7/15/1963 22:00\n", + "15130 Lowell NaN RECTANGLE IN 11/16/1999 18:00\n", + "8081 Lebanon NaN NaN OR 5/6/1995 23:30" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "link = 'http://bit.ly/uforeports'\n", + "ufo = pd.read_csv(link)\n", + "ufo.sample(n=3)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "79.65384615384616\n" + ] + } + ], + "source": [ + "#optional_blue\n", + "nilai_DSA = [60,65,67,70,90,94,75,78,98,92,80,81.5,85]\n", + "print(np.mean(nilai_DSA))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "84.67857142857143\n" + ] + } + ], + "source": [ + "#optional_blue\n", + "nilai_DSA = [60,65,67,70,90,94,75,78,98,92,80,81.5,85,150]\n", + "print(np.mean(nilai_DSA))" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "80.0\n", + "80.75\n" + ] + } + ], + "source": [ + "#optional_blue\n", + "nilai_DSA = [60,65,67,70,90,94,75,78,98,92,80,81.5,85]\n", + "print(np.median(nilai_DSA))\n", + "nilai_DSA = [60,65,67,70,90,94,75,78,98,92,80,81.5,85,150]\n", + "print(np.median(nilai_DSA))" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "789.0833333333334\n", + "769.5\n", + "425.1862255399261\n" + ] + } + ], + "source": [ + "#optional_blue\n", + "friends = [109,1017,1127,418,625,957,89,950,946,797,981,125,455,731,1640,485,1309,472,1132,1773,906,531,742,621]\n", + "print(np.mean(friends))\n", + "print(np.median(friends))\n", + "print(np.std(friends))" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD8CAYAAACRkhiPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAEq9JREFUeJzt3X+MXWd95/H3p6GgLgURyEBdO+kkyCAF1B1glI3EglLRQhJWDVSC2qog/NgaqmTbaPcPElbaoFapopaUFLVNZYqVRIKEaNM0VnGBgErTSgQyTt3EIQSc4JLBxp4mK5qKKquY7/5xz6wvzvy8P2bG87xf0uje+73POec5Psl85jzn3OemqpAktemn1rsDkqT1YwhIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGva89e7Acs4666yanJxc725I0mlj//79/1JVEytpu+FDYHJykpmZmfXuhiSdNpL880rbOhwkSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJatiyIZBkT5LjSQ721T6X5ED3czjJga4+meTf+977875l3pDkoSSHknwyScazS5KklVrJJ4ZvBv4EuHW+UFW/Pv88yQ3AD/vaP1ZVUwus5yZgF3AfsA+4GPib1XdZ0ulm8urPr6jd4evfPuae6FTLnglU1b3AUwu91/01/27gtqXWkWQL8OKq+lpVFb1AecfquytJGqVhrwm8CThWVd/pq52b5B+T/F2SN3W1rcBsX5vZrragJLuSzCSZmZubG7KLkqTFDBsCO/nJs4CjwDlV9TrgvwOfTfJiYKHx/1pspVW1u6qmq2p6YmJFE+FJkgYw8CyiSZ4H/BrwhvlaVT0DPNM935/kMeBV9P7y39a3+DbgyKDbliSNxjBnAr8MfKuq/v8wT5KJJGd0z88DtgOPV9VR4OkkF3bXEd4L3D3EtiVJI7CSW0RvA74GvDrJbJIPdm/t4LkXhN8MPJjkn4D/DXy4quYvKv8W8BfAIeAxvDNIktbdssNBVbVzkfr7FqjdCdy5SPsZ4LWr7J8kaYz8xLAkNcwQkKSGGQKS1DBDQJIaZghIUsMMAUlqmCEgSQ0beNoIScNZyfTKTq2scfNMQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJapghIEkNWzYEkuxJcjzJwb7ax5J8P8mB7ufSvveuSXIoyaNJ3tZXv7irHUpy9eh3RZK0Wis5E7gZuHiB+ieqaqr72QeQ5HxgB/Cabpk/S3JGkjOAPwUuAc4HdnZtJUnraNmppKvq3iSTK1zfZcDtVfUM8N0kh4ALuvcOVdXjAElu79p+c9U9liSNzDDXBK5M8mA3XHRmV9sKPNHXZrarLVaXJK2jQUPgJuCVwBRwFLihq2eBtrVEfUFJdiWZSTIzNzc3YBclScsZKASq6lhVnaiqHwOf4uSQzyxwdl/TbcCRJeqLrX93VU1X1fTExMQgXZQkrcBAIZBkS9/LdwLzdw7tBXYkeUGSc4HtwDeA+4HtSc5N8nx6F4/3Dt5tSdIoLHthOMltwEXAWUlmgWuBi5JM0RvSOQx8CKCqHk5yB70Lvs8CV1TViW49VwJfBM4A9lTVwyPfG0nSqqzk7qCdC5Q/vUT764DrFqjvA/atqneSpLHyE8OS1DBDQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJapghIEkNMwQkqWGGgCQ1zBCQpIYZApLUsGW/WUzS6Wny6s8v2+bw9W9fg55oI/NMQJIaZghIUsOWDYEke5IcT3Kwr/aHSb6V5MEkdyV5SVefTPLvSQ50P3/et8wbkjyU5FCSTybJeHZJkrRSKzkTuBm4+JTaPcBrq+oXgW8D1/S991hVTXU/H+6r3wTsArZ3P6euU5K0xpYNgaq6F3jqlNqXqurZ7uV9wLal1pFkC/DiqvpaVRVwK/COwbosSRqVUVwT+ADwN32vz03yj0n+LsmbutpWYLavzWxXkySto6FuEU3yP4Fngc90paPAOVX1ZJI3AH+V5DXAQuP/tcR6d9EbOuKcc84ZpouSpCUMfCaQ5HLgvwC/0Q3xUFXPVNWT3fP9wGPAq+j95d8/ZLQNOLLYuqtqd1VNV9X0xMTEoF2UJC1joBBIcjHwEeBXq+pHffWJJGd0z8+jdwH48ao6Cjyd5MLurqD3AncP3XtJ0lCWHQ5KchtwEXBWklngWnp3A70AuKe70/O+7k6gNwO/m+RZ4ATw4aqav6j8W/TuNPoZetcQ+q8jrImrvnAVB35wYK03Ky3oB89/ctk2F938hxt2/auxkr7A2vXndDD1c1PcePGNY9/OsiFQVTsXKH96kbZ3Ancu8t4M8NpV9U6SNFZNzR20FqkqrdRK5vb56vsGn9tn3OtfjZX0BdauPzrJaSMkqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSwwwBSWqYISBJDWvqw2Kj5hd5q1Ur/fCX//1vfJ4JSFLDDAFJapghIEkNMwQkqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSwwwBSWrYikIgyZ4kx5Mc7Ku9NMk9Sb7TPZ7Z1ZPkk0kOJXkwyev7lrm8a/+dJJePfnckSaux0jOBm4GLT6ldDXylqrYDX+leA1wCbO9+dgE3QS80gGuB/wRcAFw7HxySpPWxognkqureJJOnlC8DLuqe3wJ8FfhIV7+1qgq4L8lLkmzp2t5TVU8BJLmHXrDcNtQejJATwklqzTDXBF5RVUcBuseXd/WtwBN97Wa72mJ1SdI6GceF4SxQqyXqz11BsivJTJKZubm5kXZOknTSMCFwrBvmoXs83tVngbP72m0DjixRf46q2l1V01U1PTExMUQXJUlLGeZLZfYClwPXd49399WvTHI7vYvAP6yqo0m+CPx+38XgtwLXDLF9Nc5rONLwVhQCSW6jd2H3rCSz9O7yuR64I8kHge8B7+qa7wMuBQ4BPwLeD1BVTyX5PeD+rt3vzl8kliStj5XeHbRzkbfeskDbAq5YZD17gD0r7p0kaaz8juFNxOERSatlCGjFVhsyhpK08Tl3kCQ1zBCQpIYZApLUMENAkhrmhWFJG85KbioAbywYBc8EJKlhhoAkNcwQkKSGGQKS1DBDQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktSwpiaQu+oqOHBg8fd/8PiFy67jovsGbz9u4+7PuP997nv8yWXbX3jeywZe/0az0Y7XqNfdv/5xt9+MpqbgxhvHvx3PBCSpYQOfCSR5NfC5vtJ5wP8CXgL8JjDX1T9aVfu6Za4BPgicAH67qr446PYHsVyqTl69/J8VX/2J79BdXftxG3d/xv3vc7r/+6/WRjteo153//rH3V6DGzgEqupRYAogyRnA94G7gPcDn6iqj/e3T3I+sAN4DfDzwJeTvKqqTgzaB0nScEY1HPQW4LGq+ucl2lwG3F5Vz1TVd4FDwAUj2r4kaQCjCoEdwG19r69M8mCSPUnO7GpbgSf62sx2tedIsivJTJKZubm5hZpIkkZg6LuDkjwf+FXgmq50E/B7QHWPNwAfALLA4rXQOqtqN7AbYHp6esE2kjQov77ypFHcInoJ8EBVHQOYfwRI8ingr7uXs8DZfcttA46MYPvShrCSXywt/FLR6WUUw0E76RsKSrKl7713Age753uBHUlekORcYDvwjRFsX5I0oKHOBJL8B+BXgA/1lf8gyRS9oZ7D8+9V1cNJ7gC+CTwLXOGdQZK0voYKgar6EfCyU2rvWaL9dcB1w2xTkjQ6fmJYkhpmCEhSwwwBSWqYISBJDTMEJKlhhoAkNcwQkKSGGQKS1DBDQJIa1tR3DJ9unJBM2hg286yjnglIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJatjQ00YkOQw8DZwAnq2q6SQvBT4HTAKHgXdX1f9JEuCPgUuBHwHvq6oHhu2DpLZt5mkdxm1UZwK/VFVTVTXdvb4a+EpVbQe+0r0GuATY3v3sAm4a0fYlSQMY13DQZcAt3fNbgHf01W+tnvuAlyTZMqY+SJKWMYoQKOBLSfYn2dXVXlFVRwG6x5d39a3AE33Lzna1n5BkV5KZJDNzc3Mj6KIkaSGjmEr6jVV1JMnLgXuSfGuJtlmgVs8pVO0GdgNMT08/531J0mgMHQJVdaR7PJ7kLuAC4FiSLVV1tBvuOd41nwXO7lt8G3Bk2D5ILfD7JTQOQw0HJXlhkhfNPwfeChwE9gKXd80uB+7unu8F3pueC4Efzg8bSZLW3rBnAq8A7urd+cnzgM9W1ReS3A/ckeSDwPeAd3Xt99G7PfQQvVtE3z/k9iWNiGcabRoqBKrqceA/LlB/EnjLAvUCrhhmm5Kk0fE7hqVF+JexWuC0EZLUMENAkhpmCEhSw7wmsIYcY5a00XgmIEkNMwQkqWGGgCQ1zBCQpIal9yHejWt6erpmZmZGs7KrroIDBxZ9+77Hn1x2FRee97JN0361Nlr/3d/1a7+Sti23H4mpKbjxxoEWTbK/70u+luSZgCQ1rK0zgWWs9hbO0739am20/ru/69d+td/p21r79eaZgCRpRQwBSWqYISBJDTMEJKlhhoAkNcwQkKSGGQKS1DBDQJIaNnAIJDk7yd8meSTJw0l+p6t/LMn3kxzofi7tW+aaJIeSPJrkbaPYAUnS4Ib5Uplngf9RVQ8keRGwP8k93XufqKqP9zdOcj6wA3gN8PPAl5O8qqpODNEHSdIQBj4TqKqjVfVA9/xp4BFg6xKLXAbcXlXPVNV3gUPABYNuX5I0vJFcE0gyCbwO+HpXujLJg0n2JDmzq20FnuhbbJalQ0OSNGZDh0CSnwXuBK6qqn8FbgJeCUwBR4Eb5psusPiCs9cl2ZVkJsnM3NzcsF2UJC1iqBBI8tP0AuAzVfWXAFV1rKpOVNWPgU9xcshnFji7b/FtwJGF1ltVu6tquqqmJyYmhumiJGkJw9wdFODTwCNV9Ud99S19zd4JHOye7wV2JHlBknOB7cA3Bt2+JGl4w9wd9EbgPcBDSea/ruujwM4kU/SGeg4DHwKoqoeT3AF8k96dRVd4Z5Akra+BQ6Cq/oGFx/n3LbHMdcB1g25TkjRafmJYkhpmCEhSwwwBSWqYISBJDTMEJKlhhoAkNcwQkKSGGQKS1DBDQJIaNsy0EdJpZfLqzy/b5vD1b1+Dnkgbh2cCktSwTX0m4F9+krQ0zwQkqWGb+kxAS/NMSZJnApLUMENAkhpmCEhSwwwBSWqYISBJDTMEJKlhax4CSS5O8miSQ0muXuvtS5JOWtMQSHIG8KfAJcD5wM4k569lHyRJJ631mcAFwKGqeryq/i9wO3DZGvdBktRZ6xDYCjzR93q2q0mS1kGqau02lrwLeFtV/dfu9XuAC6rqv53Sbhewq3v5auDREXbjLOBfRri+ja6l/W1pX8H93eyG2d9fqKqJlTRc67mDZoGz+15vA46c2qiqdgO7x9GBJDNVNT2OdW9ELe1vS/sK7u9mt1b7u9bDQfcD25Ocm+T5wA5g7xr3QZLUWdMzgap6NsmVwBeBM4A9VfXwWvZBknTSmk8lXVX7gH1rvd0+Yxlm2sBa2t+W9hXc381uTfZ3TS8MS5I2FqeNkKSGNRMCrU1XkeRwkoeSHEgys979GbUke5IcT3Kwr/bSJPck+U73eOZ69nGUFtnfjyX5fneMDyS5dD37OEpJzk7yt0keSfJwkt/p6pvyGC+xv2M/xk0MB3XTVXwb+BV6t6neD+ysqm+ua8fGKMlhYLqqNuV91UneDPwbcGtVvbar/QHwVFVd3wX9mVX1kfXs56gssr8fA/6tqj6+nn0bhyRbgC1V9UCSFwH7gXcA72MTHuMl9vfdjPkYt3Im4HQVm0xV3Qs8dUr5MuCW7vkt9P4n2hQW2d9Nq6qOVtUD3fOngUfozS6wKY/xEvs7dq2EQIvTVRTwpST7u09gt+AVVXUUev9TAS9f5/6shSuTPNgNF22KoZFTJZkEXgd8nQaO8Sn7C2M+xq2EQBaobfZxsDdW1evpzdh6RTecoM3lJuCVwBRwFLhhfbszekl+FrgTuKqq/nW9+zNuC+zv2I9xKyGwoukqNpOqOtI9Hgfuojckttkd68ZW58dYj69zf8aqqo5V1Ymq+jHwKTbZMU7y0/R+IX6mqv6yK2/aY7zQ/q7FMW4lBJqariLJC7uLSyR5IfBW4ODSS20Ke4HLu+eXA3evY1/Gbv6XYeedbKJjnCTAp4FHquqP+t7alMd4sf1di2PcxN1BAN2tVTdycrqK69a5S2OT5Dx6f/1D71Phn91s+5vkNuAiejMtHgOuBf4KuAM4B/ge8K6q2hQXUxfZ34voDRMUcBj40Px4+ekuyX8G/h54CPhxV/4ovXHyTXeMl9jfnYz5GDcTApKk52plOEiStABDQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhv0/wHNHa2eXNdIAAAAASUVORK5CYII=\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x248b1a691d0>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "Text(0.5,0,'None')" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEKCAYAAAARnO4WAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAADtRJREFUeJzt3XGM33ddx/Hni5VJhDmMLYa0hc3YOZqFOLjMEQyMgKRbTJuYhbRhIrjQBB0YQJIZDOD4Q4UQDLEKVXFChDH4AxpSUhMcQYGS3pxM2qXJWZBdRrICc/6xsDF5+8fvN+7n7dr77u53d+Xez0fS7L6/3+f3u/c+uT776/fu922qCknS5ve0jR5AkrQ+DL4kNWHwJakJgy9JTRh8SWrC4EtSE8sGP8lHkzyY5JvnuD9JPpRkLsm9SV40/TElSas15BX+7cCe89x/PbBr/Osg8NerH0uSNG3LBr+qvgz84DxL9gEfq5HjwLOTPHdaA0qSpmPLFJ5jO3D/xPH8+LbvLl6Y5CCjvwXwzGc+88VXXnnlFD69JPVx9913f6+qtq3ksdMIfpa4bcnrNVTVYeAwwMzMTM3Ozk7h00tSH0n+a6WPncZP6cwDOyeOdwAPTOF5JUlTNI3gHwFeN/5pnWuBh6vqSadzJEkba9lTOkk+CVwHbE0yD7wbeDpAVX0YOArcAMwBjwBvWKthJUkrt2zwq+rAMvcX8PtTm0iStCZ8p60kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNDAp+kj1JTieZS3LrEvc/L8ldSe5Jcm+SG6Y/qiRpNZYNfpKLgEPA9cBu4ECS3YuW/TFwZ1VdDewH/mrag0qSVmfIK/xrgLmqOlNVjwF3APsWrSng58YfXwo8ML0RJUnTMCT424H7J47nx7dNeg9wU5J54Cjw5qWeKMnBJLNJZs+ePbuCcSVJKzUk+Fnitlp0fAC4vap2ADcAH0/ypOeuqsNVNVNVM9u2bXvq00qSVmxI8OeBnRPHO3jyKZubgTsBquprwDOArdMYUJI0HUOCfwLYleTyJBcz+qbskUVrvgO8EiDJCxgF33M2knQBWTb4VfU4cAtwDLiP0U/jnExyW5K942VvB96Y5BvAJ4HXV9Xi0z6SpA20ZciiqjrK6Juxk7e9a+LjU8BLpzuaJGmafKetJDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJamJQcFPsifJ6SRzSW49x5rXJDmV5GSST0x3TEnSam1ZbkGSi4BDwG8A88CJJEeq6tTEml3AHwEvraqHkjxnrQaWJK3MkFf41wBzVXWmqh4D7gD2LVrzRuBQVT0EUFUPTndMSdJqDQn+duD+ieP58W2TrgCuSPKVJMeT7FnqiZIcTDKbZPbs2bMrm1iStCJDgp8lbqtFx1uAXcB1wAHgb5M8+0kPqjpcVTNVNbNt27anOqskaRWGBH8e2DlxvAN4YIk1n6uqH1XVt4DTjP4AkCRdIIYE/wSwK8nlSS4G9gNHFq35LPAKgCRbGZ3iOTPNQSVJq7Ns8KvqceAW4BhwH3BnVZ1McluSveNlx4DvJzkF3AW8o6q+v1ZDS5KeulQtPh2/PmZmZmp2dnZDPrck/bRKcndVzazksb7TVpKaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYGBT/JniSnk8wlufU8625MUklmpjeiJGkalg1+kouAQ8D1wG7gQJLdS6y7BHgL8PVpDylJWr0hr/CvAeaq6kxVPQbcAexbYt17gfcBP5zifJKkKRkS/O3A/RPH8+PbfiLJ1cDOqvr8+Z4oycEks0lmz549+5SHlSSt3JDgZ4nb6id3Jk8DPgi8fbknqqrDVTVTVTPbtm0bPqUkadWGBH8e2DlxvAN4YOL4EuAq4EtJvg1cCxzxG7eSdGEZEvwTwK4klye5GNgPHHnizqp6uKq2VtVlVXUZcBzYW1WzazKxJGlFlg1+VT0O3AIcA+4D7qyqk0luS7J3rQeUJE3HliGLquoocHTRbe86x9rrVj+WJGnafKetJDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJamJQcFPsifJ6SRzSW5d4v63JTmV5N4kX0zy/OmPKklajWWDn+Qi4BBwPbAbOJBk96Jl9wAzVfVC4DPA+6Y9qCRpdYa8wr8GmKuqM1X1GHAHsG9yQVXdVVWPjA+PAzumO6YkabWGBH87cP/E8fz4tnO5GfjCUnckOZhkNsns2bNnh08pSVq1IcHPErfVkguTm4AZ4P1L3V9Vh6tqpqpmtm3bNnxKSdKqbRmwZh7YOXG8A3hg8aIkrwLeCby8qh6dzniSpGkZ8gr/BLAryeVJLgb2A0cmFyS5GvgIsLeqHpz+mJKk1Vo2+FX1OHALcAy4D7izqk4muS3J3vGy9wPPAj6d5N+THDnH00mSNsiQUzpU1VHg6KLb3jXx8aumPJckacp8p60kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNDAp+kj1JTieZS3LrEvf/TJJPje//epLLpj2oJGl1lg1+kouAQ8D1wG7gQJLdi5bdDDxUVb8MfBD482kPKklanSGv8K8B5qrqTFU9BtwB7Fu0Zh/wD+OPPwO8MkmmN6YkabW2DFizHbh/4nge+LVzramqx5M8DPwC8L3JRUkOAgfHh48m+eZKht6EtrJorxpzLxa4FwvciwW/stIHDgn+Uq/UawVrqKrDwGGAJLNVNTPg82967sUC92KBe7HAvViQZHaljx1ySmce2DlxvAN44FxrkmwBLgV+sNKhJEnTNyT4J4BdSS5PcjGwHziyaM0R4HfGH98I/HNVPekVviRp4yx7Smd8Tv4W4BhwEfDRqjqZ5DZgtqqOAH8HfDzJHKNX9vsHfO7Dq5h7s3EvFrgXC9yLBe7FghXvRXwhLkk9+E5bSWrC4EtSE2sefC/LsGDAXrwtyakk9yb5YpLnb8Sc62G5vZhYd2OSSrJpfyRvyF4kec34a+Nkkk+s94zrZcDvkecluSvJPePfJzdsxJxrLclHkzx4rvcqZeRD4326N8mLBj1xVa3ZL0bf5P1P4JeAi4FvALsXrfk94MPjj/cDn1rLmTbq18C9eAXws+OP39R5L8brLgG+DBwHZjZ67g38utgF3AP8/Pj4ORs99wbuxWHgTeOPdwPf3ui512gvXga8CPjmOe6/AfgCo/dAXQt8fcjzrvUrfC/LsGDZvaiqu6rqkfHhcUbvediMhnxdALwXeB/ww/Ucbp0N2Ys3Aoeq6iGAqnpwnWdcL0P2ooCfG398KU9+T9CmUFVf5vzvZdoHfKxGjgPPTvLc5Z53rYO/1GUZtp9rTVU9DjxxWYbNZsheTLqZ0Z/gm9Gye5HkamBnVX1+PQfbAEO+Lq4ArkjylSTHk+xZt+nW15C9eA9wU5J54Cjw5vUZ7YLzVHsCDLu0wmpM7bIMm8Dg/88kNwEzwMvXdKKNc969SPI0Rlddff16DbSBhnxdbGF0Wuc6Rn/r+5ckV1XVf6/xbOttyF4cAG6vqg8keQmj9/9cVVU/XvvxLigr6uZav8L3sgwLhuwFSV4FvBPYW1WPrtNs6225vbgEuAr4UpJvMzpHeWSTfuN26O+Rz1XVj6rqW8BpRn8AbDZD9uJm4E6Aqvoa8AxGF1brZlBPFlvr4HtZhgXL7sX4NMZHGMV+s56nhWX2oqoerqqtVXVZVV3G6PsZe6tqxReNuoAN+T3yWUbf0CfJVkaneM6s65TrY8hefAd4JUCSFzAK/tl1nfLCcAR43finda4FHq6q7y73oDU9pVNrd1mGnzoD9+L9wLOAT4+/b/2dqtq7YUOvkYF70cLAvTgGvDrJKeB/gXdU1fc3buq1MXAv3g78TZK3MjqF8frN+AIxyScZncLbOv5+xbuBpwNU1YcZff/iBmAOeAR4w6Dn3YR7JUlagu+0laQmDL4kNWHwJakJgy9JTRh8SWrC4GvTG19t8wMTx3+Y5D0bOJK0IQy+OngU+K3xm5aktgy+Onic0WV137r4jiTPH//bA0/8GwTPG99++/h6419NcibJjROPeUeSE+PH/Mn6/W9Iq2Pw1cUh4LVJLl10+18yuszsC4F/BD40cd9zgV8HfhP4M4Akr2Z0HZtrgF8FXpzkZWs8uzQVBl8tVNX/AB8D3rLorpcAT/wLUh9nFPgnfLaqflxVp4BfHN/26vGve4B/A65kc17ITJvQWl8eWbqQ/AWjSP/9edZMXmtk8mqlmfjvn1bVR6Y8m7TmfIWvNqrqB4wurXvzxM1fZeGCfa8F/nWZpzkG/G6SZwEk2Z7kOdOeVVoLBl/dfID/f/30twBvSHIv8NvAH5zvwVX1T4xOAX0tyX8w+mc5L1mjWaWp8mqZktSEr/AlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJv4PFsyxeorkq3kAAAAASUVORK5CYII=\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x248b1dd0cc0>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#optional_blue\n", + "y_pos = range(len(friends))\n", + "plt.bar(y_pos, friends)\n", + "plt.plot((0,25), (789,789), 'b-')\n", + "plt.plot((0,25), (789+425,789+425), 'g-')\n", + "plt.plot((0,25), (789-425,789-425), 'r-')\n", + "plt.xlabel(plt.show())" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAEB9JREFUeJzt3X+MZWV9x/H3p4A2UVK1OwouOy62+4c0bUEnq4amwfgLVuOqlQSaKJqaaQy0mtg/Vk2wMWlC/6g2FiJdhYCNgkZFtmFbBKRB00jYJSuwbIkrgTLuBlZoQKKtWfn2jznU6XBnZ3bO2XuXed6v5OaeHw/n+xzu7HzmOefcc1JVSJLa8xuT7oAkaTIMAElqlAEgSY0yACSpUQaAJDXKAJCkRvUOgCQbktyeZF+SvUk+OqLNOUmeTLKne13at64kqZ8TB9jGYeDjVXV3kpOB3Uluqar7F7X7XlW9c4B6kqQB9B4BVNXBqrq7m/4ZsA9Y33e7kqRja4gRwP9JshE4C7hzxOo3JvkhcAD4q6rau9z21q1bVxs3bhyyi5K0pu3evfunVTW1kraDBUCSFwPfBD5WVU8tWn038KqqejrJFuDbwKYltjMLzAJMT0+za9euobooSWtekodX2naQq4CSnMT8L/+vVNW3Fq+vqqeq6ulueidwUpJ1o7ZVVduraqaqZqamVhRikqRVGOIqoABXAfuq6rNLtDmla0eSzV3dx/vWliSt3hCHgM4G3g/cm2RPt+yTwDRAVV0JvA/4SJLDwC+AC8rbkErSRPUOgKr6PpBl2lwOXN63liRpOH4TWJIaZQBIUqMMAElqlAEgSY0a9JvAkjS0jdtuWlG7hy57xzHuydrjCECSGmUASFKjDABJapQBIEmNMgAkqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWrUEI+E3JDk9iT7kuxN8tERbZLk80n2J7knyWv71pUk9TPEzeAOAx+vqruTnAzsTnJLVd2/oM15wKbu9XrgC927JGlCeo8AqupgVd3dTf8M2AesX9RsK/DlmvcD4CVJTu1bW5K0eoOeA0iyETgLuHPRqvXAIwvm53huSEiSxmiw5wEkeTHwTeBjVfXU4tUj/pNaYjuzwCzA9PT0UN2Tnre8H76OlUFGAElOYv6X/1eq6lsjmswBGxbMnwYcGLWtqtpeVTNVNTM1NTVE9yRJIwxxFVCAq4B9VfXZJZrtAD7QXQ30BuDJqjrYt7YkafWGOAR0NvB+4N4ke7plnwSmAarqSmAnsAXYD/wc+NAAdSVJPfQOgKr6PqOP8S9sU8DFfWtJkobjN4ElqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWqUASBJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0a6pnAVyd5LMl9S6w/J8mTSfZ0r0uHqCtJWr0hHgkJcA1wOfDlI7T5XlW9c6B6kqSeBhkBVNUdwBNDbEuSNB7jPAfwxiQ/TPIvSX5vjHUlSSMMdQhoOXcDr6qqp5NsAb4NbBrVMMksMAswPT09pu5JUnvGMgKoqqeq6ulueidwUpJ1S7TdXlUzVTUzNTU1ju5JUpPGEgBJTkmSbnpzV/fxcdSWJI02yCGgJNcB5wDrkswBnwZOAqiqK4H3AR9Jchj4BXBBVdUQtSVJqzNIAFTVhcusv5z5y0QlSccJvwksSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNGtfdQCUdxzZuu2nFbR+67B3HsCcaJ0cAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVGDBECSq5M8luS+JdYnyeeT7E9yT5LXDlFXkrR6Q40ArgHOPcL684BN3WsW+MJAdSVJqzRIAFTVHcATR2iyFfhyzfsB8JIkpw5RW5K0OuM6B7AeeGTB/Fy3TJI0IeMKgIxYViMbJrNJdiXZdejQoWPcLUlq17gCYA7YsGD+NODAqIZVtb2qZqpqZmpqaiydk6QWjSsAdgAf6K4GegPwZFUdHFNtSdIIg9wNNMl1wDnAuiRzwKeBkwCq6kpgJ7AF2A/8HPjQEHUlSas3SABU1YXLrC/g4iFqSZKG4TeBJalRBoAkNcoAkKRGGQCS1CifCSxpbFb67GGfOzweBkAPPkhb0vOZh4AkqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWqUASBJjTIAJKlRBoAkNWqQAEhybpIHkuxPsm3E+g8mOZRkT/f68BB1JUmr1/teQElOAK4A3sr8w9/vSrKjqu5f1PRrVXVJ33qSpGEMcTO4zcD+qnoQIMn1wFZgcQAc97xToaSWDHEIaD3wyIL5uW7ZYn+S5J4k30iyYYC6kqQehgiAjFhWi+b/GdhYVX8A3Apcu+TGktkku5LsOnTo0ADdkySNMkQAzAEL/6I/DTiwsEFVPV5V/9PNfhF43VIbq6rtVTVTVTNTU1MDdE+SNMoQ5wDuAjYlOR34CXAB8KcLGyQ5taoOdrPvAvYNUFdakudzpOX1DoCqOpzkEuBm4ATg6qram+QzwK6q2gH8ZZJ3AYeBJ4AP9q0rSepnkEdCVtVOYOeiZZcumP4E8IkhakmShuEzgdcoD4FIWo4BoFVbacjAr4PGYJKOH94LSJIaZQBIUqMMAElqlAEgSY3yJLCkNceLDVbGEYAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDVqkABIcm6SB5LsT7JtxPoXJvlat/7OJBuHqCtJWr3eAZDkBOAK4DzgDODCJGcsavZnwH9V1e8CnwP+tm9dSVI/Q4wANgP7q+rBqvolcD2wdVGbrcC13fQ3gDcnyQC1JUmrNMTN4NYDjyyYnwNev1Sb7iHyTwK/Dfx0gPpa47yxl3RspKr6bSA5H3h7VX24m38/sLmq/mJBm71dm7lu/sddm8dHbG8WmAWYnp5+3cMPP7yqfh2vvzRW069x7cvx+v9sHMb1eMu19FmupZ+XtfT5J9ldVTMraTvEIaA5YMOC+dOAA0u1SXIi8FvAE6M2VlXbq2qmqmampqYG6J4kaZQhAuAuYFOS05O8ALgA2LGozQ7gom76fcB3q+/QQ5LUS+9zAN0x/UuAm4ETgKuram+SzwC7qmoHcBXwT0n2M/+X/wV960qS+hnkiWBVtRPYuWjZpQum/xs4f4hakqRh+EhISVqF58PJ7eV4KwhJapQjAGmM1sJfjVo7HAFIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmN8l5AzwPeP0ZaG463f8uOACSpUb0CIMnLktyS5Efd+0uXaPerJHu61+LHRUqSJqDvCGAbcFtVbQJu6+ZH+UVVndm93tWzpiRpAH0DYCtwbTd9LfDuntuTJI1J3wB4RVUdBOjeX75Eu99MsivJD5IYEpJ0HFj2KqAktwKnjFj1qaOoM11VB5K8Gvhuknur6sdL1JsFZgGmp6ePooQk6WgsGwBV9Zal1iV5NMmpVXUwyanAY0ts40D3/mCSfwPOAkYGQFVtB7YDzMzM1LJ7IElalb6HgHYAF3XTFwE3Lm6Q5KVJXthNrwPOBu7vWVeS1FPfALgMeGuSHwFv7eZJMpPkS12b1wC7kvwQuB24rKoMAEmasF7fBK6qx4E3j1i+C/hwN/3vwO/3qSNJGp63gpDUvOPtFg3j4q0gJKlRBoAkNcoAkKRGGQCS1ChPAktrUKsnNXV0HAFIUqMcAUhaFUcZz3+OACSpUY4ApFXyL2A93zkCkKRGGQCS1CgDQJIa5TmAMfO4saTjhSMASWqUASBJjeoVAEnOT7I3yTNJZo7Q7twkDyTZn2Rbn5qSpGH0HQHcB7wXuGOpBklOAK4AzgPOAC5MckbPupKknvo+EnIfQJIjNdsM7K+qB7u21wNb8cHwkjRR4zgHsB54ZMH8XLdMkjRBy44AktwKnDJi1aeq6sYV1Bg1PKgj1JsFZgGmp6dXsHlJ0mosGwBV9ZaeNeaADQvmTwMOHKHedmA7wMzMzJJBIUnqZxyHgO4CNiU5PckLgAuAHWOoK0k6gr6Xgb4nyRzwRuCmJDd3y1+ZZCdAVR0GLgFuBvYBX6+qvf26LUnqq+9VQDcAN4xYfgDYsmB+J7CzTy1J0rD8JrAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVF9nwh2fpK9SZ5JMnOEdg8luTfJniS7+tSUJA2j1xPBgPuA9wL/uIK2b6qqn/asJ0kaSN9HQu4DSDJMbyRJYzOucwAFfCfJ7iSzY6opSTqCZUcASW4FThmx6lNVdeMK65xdVQeSvBy4Jcl/VNUdS9SbBWYBpqenV7h5SdLRWjYAquotfYtU1YHu/bEkNwCbgZEBUFXbge0AMzMz1be2JGm0Y34IKMmLkpz87DTwNuZPHkuSJqjXSeAk7wH+AZgCbkqyp6renuSVwJeqagvwCuCG7kTxicBXq+pfe/ZbGtRDl71j0l2Qxq7vVUA3ADeMWH4A2NJNPwj8YZ86kqTh9f0ewHHLv+gk6ci8FYQkNWrNjgB09Bw1SW1xBCBJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY1K1fF7y/0kh4CHB9zkOqDl5xK7/+6/+7/2vaqqplbS8LgOgKEl2VVVM5Pux6S4/+6/+9/u/o/iISBJapQBIEmNai0Atk+6AxPm/rfN/df/09Q5AEnSr7U2ApAkdZoIgCTnJnkgyf4k2ybdn3FL8lCSe5PsSbJr0v0ZhyRXJ3ksyX0Llr0syS1JftS9v3SSfTxWltj3v07yk+5nYE+SLZPs47GUZEOS25PsS7I3yUe75U18/kdjzQdAkhOAK4DzgDOAC5OcMdleTcSbqurMhi6DuwY4d9GybcBtVbUJuK2bX4uu4bn7DvC57mfgzKraOeY+jdNh4ONV9RrgDcDF3b/5Vj7/FVvzAQBsBvZX1YNV9UvgemDrhPukY6yq7gCeWLR4K3BtN30t8O6xdmpMltj3ZlTVwaq6u5v+GbAPWE8jn//RaCEA1gOPLJif65a1pIDvJNmdZHbSnZmgV1TVQZj/JQG8fML9GbdLktzTHSJq4vBHko3AWcCd+Pk/RwsBkBHLWrv06eyqei3zh8EuTvLHk+6Qxu4LwO8AZwIHgb+bbHeOvSQvBr4JfKyqnpp0f45HLQTAHLBhwfxpwIEJ9WUiqupA9/4YcAPzh8Va9GiSUwG698cm3J+xqapHq+pXVfUM8EXW+M9AkpOY/+X/lar6Vre42c9/KS0EwF3ApiSnJ3kBcAGwY8J9GpskL0py8rPTwNuA+478X61ZO4CLuumLgBsn2JexevYXX+c9rOGfgSQBrgL2VdVnF6xq9vNfShNfBOsueft74ATg6qr6mwl3aWySvJr5v/oBTgS+2sL+J7kOOIf5O0A+Cnwa+DbwdWAa+E/g/KpacydLl9j3c5g//FPAQ8CfP3s8fK1J8kfA94B7gWe6xZ9k/jzAmv/8j0YTASBJeq4WDgFJkkYwACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJatT/AieUj5Gq0/4vAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x248b1e7fa58>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "z_scores = []\n", + "m = np.mean(friends)\n", + "s = np.std(friends)\n", + "for friend in friends:\n", + " z = (friend - m)/s\n", + " z_scores.append(z)\n", + "plt.bar(y_pos, z_scores)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAEU9JREFUeJzt3X2MZmV9xvHvVV5sorS+7Cq47LjY7h+lb2AniKFpaAQLaFy10kATBVMzjZFUEpt01QSNSRNaW0ssRroKERsVjYpsw1YEhaBpICxkBZYtdbvBMu7KIjQg0dYgv/4xj2Ucnnk953lmdu7vJ5nMebk5v/vMYeea+5zznJOqQpLUnl9a7Q5IklaHASBJjTIAJKlRBoAkNcoAkKRGGQCS1KjOAZBkc5Jbk+xLsjfJe4a0OTPJE0n2DL4u61pXktTN0T1s42ngvVV1T5LjgLuT3FxVD8xp962qekMP9SRJPeg8AqiqQ1V1z2D6R8A+YFPX7UqSRquPEcD/S7IFOBW4c8jq1yT5DnAQ+Muq2rvY9jZs2FBbtmzps4uStK7dfffdP6yqjUtp21sAJHkB8GXg0qp6cs7qe4BXVNVTSc4DvgpsnWc7U8AUwMTEBLt37+6ri5K07iX53lLb9nIXUJJjmPnl/9mq+src9VX1ZFU9NZjeBRyTZMOwbVXVjqqarKrJjRuXFGKSpBXo4y6gAFcD+6rqo/O0OX7QjiSnDeo+1rW2JGnl+jgFdAbwNuC+JHsGy94PTABU1VXAW4F3JXka+AlwQfkYUklaVZ0DoKq+DWSRNlcCV3atJUnqj58ElqRGGQCS1CgDQJIaZQBIUqN6/SSwJM21ZfuNS2r30OWvH3FPNJcjAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVF9vBJyc5Jbk+xLsjfJe4a0SZKPJdmf5N4kr+paV5LUTR8Pg3saeG9V3ZPkOODuJDdX1QOz2pwLbB18vRr4xOC7JGmVdB4BVNWhqrpnMP0jYB+waU6zbcBnasYdwAuTnNC1tiRp5Xq9BpBkC3AqcOecVZuAh2fNT/PckJAkjVFv7wNI8gLgy8ClVfXk3NVD/pOaZztTwBTAxMREX92T1pSlPCPf5+Nr1HoZASQ5hplf/p+tqq8MaTINbJ41fyJwcNi2qmpHVU1W1eTGjRv76J4kaYg+7gIKcDWwr6o+Ok+zncDbB3cDnQ48UVWHutaWJK1cH6eAzgDeBtyXZM9g2fuBCYCqugrYBZwH7Ad+DLyjh7qSpA46B0BVfZvh5/hntyng3V1rSZL64yeBJalRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmN6uudwNckOZzk/nnWn5nkiSR7Bl+X9VFXkrRyfbwSEuDTwJXAZxZo862qekNP9SRJHfUyAqiq24HH+9iWJGk8xnkN4DVJvpPkX5P85hjrSpKG6OsU0GLuAV5RVU8lOQ/4KrB1WMMkU8AUwMTExJi6J0ntGcsIoKqerKqnBtO7gGOSbJin7Y6qmqyqyY0bN46je5LUpLEEQJLjk2Qwfdqg7mPjqC1JGq6XU0BJPg+cCWxIMg18EDgGoKquAt4KvCvJ08BPgAuqqvqoLUlamV4CoKouXGT9lczcJipJWiP8JLAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDVqXE8DlTRGW7bfuGibhy5//Rh6orXMEYAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqVC8BkOSaJIeT3D/P+iT5WJL9Se5N8qo+6kqSVq6vEcCngXMWWH8usHXwNQV8oqe6kqQV6iUAqup24PEFmmwDPlMz7gBemOSEPmpLklZmXJ8E3gQ8PGt+erDs0Jjqc+nXLmXPD/aMq5y0oB8c+9iibc789EfW7PaXYyl9gfH150hwyvGncMU5V4y8zrguAmfIshraMJlKsjvJ7kcffXTE3ZKkdo1rBDANbJ41fyJwcFjDqtoB7ACYnJwcGhIrMY40lZZqKc/que3ilT+rZ9TbX46l9AXG1x89a1wjgJ3A2wd3A50OPFFVYzv9I0l6rl5GAEk+D5wJbEgyDXwQOAagqq4CdgHnAfuBHwPv6KOuJGnlegmAqrpwkfUFvLuPWpKkfvhJYElqlAEgSY0yACSpUQaAJDXKdwJLWpal3tfvO4fXPgNghXzptqQjnaeAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDWqlwBIck6SB5PsT7J9yPqLkzyaZM/g65191JUkrVznZwElOQr4OHA2My9/vyvJzqp6YE7TL1TVJV3rSZL60cfD4E4D9lfVAYAk1wHbgLkBsKb5cDdJrenjFNAm4OFZ89ODZXP9cZJ7k3wpyeYe6kqSOugjADJkWc2Z/xdgS1X9DnALcO28G0umkuxOsvvRRx/toXuSpGH6CIBpYPZf9CcCB2c3qKrHqup/B7OfBH5vvo1V1Y6qmqyqyY0bN/bQPUnSMH1cA7gL2JrkJOD7wAXAn85ukOSEqjo0mH0jsK+HumqY12yk7joHQFU9neQS4CbgKOCaqtqb5MPA7qraCfxFkjcCTwOPAxd3rStJ6qaXV0JW1S5g15xll82afh/wvj5qSZL64TuB1wlPiUhaLgNAS7LcgDGQpLXPZwFJUqMMAElqlAEgSY0yACSpUV4ElrSmLOUGAvAmgj44ApCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVEGgCQ1ygCQpEb1EgBJzknyYJL9SbYPWf+8JF8YrL8zyZY+6kqSVq5zACQ5Cvg4cC5wMnBhkpPnNPsz4L+r6teBfwD+pmtdSVI3fYwATgP2V9WBqvopcB2wbU6bbcC1g+kvAa9Nkh5qS5JWqI+HwW0CHp41Pw28er42g5fIPwG8BPhhD/WX5NJLYc+e+df/4MDpi27jzDtW3n7URt2fUf987jjw2KLtT3/lS1a8/bVmrR2vvrc9e/ujbr8enXIKXHHF6Ov0EQDD/pKvFbSZaZhMAVMAExMTK+7U3CcKPv7tk/np4V/5hWWzf6HMnl6K5bZf7i+45bYfdX9G/fM50n/+R/rxWs72j8RjO3u7o25/JOkjAKaBzbPmTwQOztNmOsnRwK8Cjw/bWFXtAHYATE5ODg2JlXjxWQ88Z9ltY3yc7Jbti/+5ctsvvFN3ee1H3Z8j3ah//kf68TqS/39YSt/h2f6Puv2RpI9rAHcBW5OclORY4AJg55w2O4GLBtNvBb5ZVb39cpckLV/nEcDgnP4lwE3AUcA1VbU3yYeB3VW1E7ga+Ock+5n5y/+CrnUlSd308kawqtoF7Jqz7LJZ0/8DnN9HLUlSP3wlpKSm+CrJZ/koCElqlCMAqQf+VakjkSMASWqUASBJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUT4LaI3y2TLS2rCe/y06ApCkRnUKgCQvTnJzku8Ovr9onnY/S7Jn8DX3dZGSpFXQdQSwHfhGVW0FvjGYH+YnVXXK4OuNHWtKknrQNQC2AdcOpq8F3tRxe5KkMekaAC+rqkMAg+8vnafdLyfZneSOJIaEJK0Bi94FlOQW4Pghqz6wjDoTVXUwySuBbya5r6r+c556U8AUwMTExDJKSJKWY9EAqKqz5luX5JEkJ1TVoSQnAIfn2cbBwfcDSW4DTgWGBkBV7QB2AExOTtaieyBJWpGup4B2AhcNpi8CbpjbIMmLkjxvML0BOAN4oGNdSVJHXQPgcuDsJN8Fzh7Mk2QyyacGbX4D2J3kO8CtwOVVZQBI0irr9EngqnoMeO2Q5buBdw6m/w347S51JEn981EQko5o6/lRDaPmoyAkqVEGgCQ1ygCQpEYZAJLUKC8CS0cAL3RqFBwBSFKjHAFIcoTRKEcAktQoRwDSEP5FrBY4ApCkRhkAktQoA0CSGuU1gDHxnLKktcYRgCQ1ygCQpEZ1CoAk5yfZm+SZJJMLtDsnyYNJ9ifZ3qWmJKkfXUcA9wNvAW6fr0GSo4CPA+cCJwMXJjm5Y11JUkddXwm5DyDJQs1OA/ZX1YFB2+uAbfhieElaVeO4C2gT8PCs+Wng1WOo+wsuu2UHJx8+8IsL7/jIuLuxZlx34LHFG62jn09r+6sj3CmnwBVXjLzMogGQ5Bbg+CGrPlBVNyyhxrDhQS1QbwqYApiYmFjC5iVJK7FoAFTVWR1rTAObZ82fCBxcoN4OYAfA5OTkvEGxXB8+a+o5y1q+N/+C7Tcu2mY9/Xxa219pKcZxG+hdwNYkJyU5FrgA2DmGupKkBXS9DfTNSaaB1wA3JrlpsPzlSXYBVNXTwCXATcA+4ItVtbdbtyVJXXW9C+h64Pohyw8C582a3wXs6lJLktQvPwksSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWpU1zeCnZ9kb5Jnkkwu0O6hJPcl2ZNkd5eakqR+dHojGHA/8Bbgn5bQ9g+r6ocd60mSetL1lZD7AJL00xtJ0tiM6xpAAV9PcneSqTHVlCQtYNERQJJbgOOHrPpAVd2wxDpnVNXBJC8Fbk7y71V1+zz1poApgImJiSVuXpK0XIsGQFWd1bVIVR0cfD+c5HrgNGBoAFTVDmAHwOTkZHWtLUkabuSngJI8P8lxP58GXsfMxWNJ0irqdBE4yZuBfwQ2Ajcm2VNVf5Tk5cCnquo84GXA9YMLxUcDn6uqr3Xst7QsD13++tXugrTmdL0L6Hrg+iHLDwLnDaYPAL/bpY4kqX9dPwewZvkXnyQtzEdBSFKj1u0IQAtzhCTJEYAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDUqVWv3kftJHgW+1+MmNwAtvZe4pf1taV/B/V3vuuzvK6pq41IarukA6FuS3VU1udr9GJeW9relfQX3d70b1/56CkiSGmUASFKjWguAHavdgTFraX9b2ldwf9e7sexvU9cAJEnPam0EIEkaaCIAkpyT5MEk+5NsX+3+jFqSh5Lcl2RPkt2r3Z++JbkmyeEk989a9uIkNyf57uD7i1azj32aZ38/lOT7g2O8J8l5q9nHPiXZnOTWJPuS7E3ynsHydXmMF9jfkR/jdX8KKMlRwH8AZwPTwF3AhVX1wKp2bISSPARMVtW6vG86yR8ATwGfqarfGiz7W+Dxqrp8EPIvqqq/Ws1+9mWe/f0Q8FRV/d1q9m0UkpwAnFBV9yQ5DrgbeBNwMevwGC+wv3/CiI9xCyOA04D9VXWgqn4KXAdsW+U+qYOquh14fM7ibcC1g+lrmfkHtC7Ms7/rVlUdqqp7BtM/AvYBm1inx3iB/R25FgJgE/DwrPlpxvTDXUUFfD3J3UmmVrszY/KyqjoEM/+ggJeucn/G4ZIk9w5OEa2L0yFzJdkCnArcSQPHeM7+woiPcQsBkCHL1vd5Lzijql4FnAu8e3AKQevLJ4BfA04BDgF/v7rd6V+SFwBfBi6tqidXuz+jNmR/R36MWwiAaWDzrPkTgYOr1JexqKqDg++HgeuZOQ223j0yOJf683Oqh1e5PyNVVY9U1c+q6hngk6yzY5zkGGZ+GX62qr4yWLxuj/Gw/R3HMW4hAO4CtiY5KcmxwAXAzlXu08gkef7gQhJJng+8Drh/4f9qXdgJXDSYvgi4YRX7MnI//0U48GbW0TFOEuBqYF9VfXTWqnV5jOfb33Ec43V/FxDA4PapK4CjgGuq6q9XuUsjk+SVzPzVD3A08Ln1tr9JPg+cycwTEx8BPgh8FfgiMAH8F3B+Va2LC6fz7O+ZzJwaKOAh4M9/fn78SJfk94FvAfcBzwwWv5+Z8+Lr7hgvsL8XMuJj3EQASJKeq4VTQJKkIQwASWqUASBJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIa9X+gQk7CmU6YZgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x248b1efd048>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.bar(y_pos, z_scores)\n", + "plt.plot((0,25), (1,1), 'g-')\n", + "plt.plot((0,25), (0,0), 'b-')\n", + "plt.plot((0,25), (-1,-1), 'r-')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[109,\n", + " 1017,\n", + " 1127,\n", + " 418,\n", + " 625,\n", + " 957,\n", + " 89,\n", + " 950,\n", + " 946,\n", + " 797,\n", + " 981,\n", + " 125,\n", + " 455,\n", + " 731,\n", + " 1640,\n", + " 485,\n", + " 1309,\n", + " 472,\n", + " 1132,\n", + " 1773,\n", + " 906,\n", + " 531,\n", + " 742,\n", + " 621]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "friends = [109, 1017, 1127, 418, 625, 957,89,950,946,797,981,\n", + " 125, 455, 731, 1640, 485, 1309, 472, 1132, 1773, 906, 531, 742, 621]\n", + "friends" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lab_dsa_2/lab2_arief.ipynb b/lab_dsa_2/lab2_arief.ipynb index ed467f40b7c17db6dcc2ce041b7626d6190ea143..a0b40a6651a736d0b0d217fa0dd3fb013511c1e5 100644 --- a/lab_dsa_2/lab2_arief.ipynb +++ b/lab_dsa_2/lab2_arief.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -17,7 +17,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 3, "metadata": { "scrolled": true }, @@ -28,7 +28,7 @@ "43.002372" ] }, - "execution_count": 5, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -44,7 +44,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -60,7 +60,7 @@ "0.614372000000003" ] }, - "execution_count": 6, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -74,16 +74,16 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[4, 3, 0, 5, 7]" + "[7, 1, 14, 3, 12]" ] }, - "execution_count": 7, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -96,42 +96,78 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 6, "metadata": { "scrolled": true }, "outputs": [ { - "ename": "URLError", - "evalue": "<urlopen error [WinError 10060] A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond>", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mTimeoutError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\urllib\\request.py\u001b[0m in \u001b[0;36mdo_open\u001b[1;34m(self, http_class, req, **http_conn_args)\u001b[0m\n\u001b[0;32m 1317\u001b[0m h.request(req.get_method(), req.selector, req.data, headers,\n\u001b[1;32m-> 1318\u001b[1;33m encode_chunked=req.has_header('Transfer-encoding'))\n\u001b[0m\u001b[0;32m 1319\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mOSError\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[1;33m:\u001b[0m \u001b[1;31m# timeout error\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\http\\client.py\u001b[0m in \u001b[0;36mrequest\u001b[1;34m(self, method, url, body, headers, encode_chunked)\u001b[0m\n\u001b[0;32m 1238\u001b[0m \u001b[1;34m\"\"\"Send a complete request to the server.\"\"\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1239\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_send_request\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmethod\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0murl\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbody\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mheaders\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mencode_chunked\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1240\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\http\\client.py\u001b[0m in \u001b[0;36m_send_request\u001b[1;34m(self, method, url, body, headers, encode_chunked)\u001b[0m\n\u001b[0;32m 1284\u001b[0m \u001b[0mbody\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0m_encode\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mbody\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'body'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1285\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mendheaders\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mbody\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mencode_chunked\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mencode_chunked\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1286\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\http\\client.py\u001b[0m in \u001b[0;36mendheaders\u001b[1;34m(self, message_body, encode_chunked)\u001b[0m\n\u001b[0;32m 1233\u001b[0m \u001b[1;32mraise\u001b[0m \u001b[0mCannotSendHeader\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1234\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_send_output\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmessage_body\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mencode_chunked\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mencode_chunked\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1235\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\http\\client.py\u001b[0m in \u001b[0;36m_send_output\u001b[1;34m(self, message_body, encode_chunked)\u001b[0m\n\u001b[0;32m 1025\u001b[0m \u001b[1;32mdel\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_buffer\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1026\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msend\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmsg\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1027\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\http\\client.py\u001b[0m in \u001b[0;36msend\u001b[1;34m(self, data)\u001b[0m\n\u001b[0;32m 963\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mauto_open\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 964\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mconnect\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 965\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\http\\client.py\u001b[0m in \u001b[0;36mconnect\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 935\u001b[0m self.sock = self._create_connection(\n\u001b[1;32m--> 936\u001b[1;33m (self.host,self.port), self.timeout, self.source_address)\n\u001b[0m\u001b[0;32m 937\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msock\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msetsockopt\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msocket\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mIPPROTO_TCP\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msocket\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mTCP_NODELAY\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\socket.py\u001b[0m in \u001b[0;36mcreate_connection\u001b[1;34m(address, timeout, source_address)\u001b[0m\n\u001b[0;32m 723\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0merr\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 724\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0merr\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 725\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\socket.py\u001b[0m in \u001b[0;36mcreate_connection\u001b[1;34m(address, timeout, source_address)\u001b[0m\n\u001b[0;32m 712\u001b[0m \u001b[0msock\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mbind\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msource_address\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 713\u001b[1;33m \u001b[0msock\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mconnect\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msa\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 714\u001b[0m \u001b[1;31m# Break explicitly a reference cycle\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;31mTimeoutError\u001b[0m: [WinError 10060] A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond", - "\nDuring handling of the above exception, another exception occurred:\n", - "\u001b[1;31mURLError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32m<ipython-input-10-0d34d4396123>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[0mlink\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m'http://bit.ly/uforeports'\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mufo\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mread_csv\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mlink\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3\u001b[0m \u001b[0mufo\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msample\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mn\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m3\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\pandas\\io\\parsers.py\u001b[0m in \u001b[0;36mparser_f\u001b[1;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, escapechar, comment, encoding, dialect, tupleize_cols, error_bad_lines, warn_bad_lines, skipfooter, skip_footer, doublequote, delim_whitespace, as_recarray, compact_ints, use_unsigned, low_memory, buffer_lines, memory_map, float_precision)\u001b[0m\n\u001b[0;32m 707\u001b[0m skip_blank_lines=skip_blank_lines)\n\u001b[0;32m 708\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 709\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0m_read\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkwds\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 710\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 711\u001b[0m \u001b[0mparser_f\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__name__\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mname\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\pandas\\io\\parsers.py\u001b[0m in \u001b[0;36m_read\u001b[1;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[0;32m 431\u001b[0m \u001b[0mcompression\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0m_infer_compression\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcompression\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 432\u001b[0m filepath_or_buffer, _, compression = get_filepath_or_buffer(\n\u001b[1;32m--> 433\u001b[1;33m filepath_or_buffer, encoding, compression)\n\u001b[0m\u001b[0;32m 434\u001b[0m \u001b[0mkwds\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'compression'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcompression\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 435\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\pandas\\io\\common.py\u001b[0m in \u001b[0;36mget_filepath_or_buffer\u001b[1;34m(filepath_or_buffer, encoding, compression)\u001b[0m\n\u001b[0;32m 188\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 189\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0m_is_url\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 190\u001b[1;33m \u001b[0mreq\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0m_urlopen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 191\u001b[0m \u001b[0mcontent_encoding\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mreq\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mheaders\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'Content-Encoding'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 192\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mcontent_encoding\u001b[0m \u001b[1;33m==\u001b[0m \u001b[1;34m'gzip'\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\urllib\\request.py\u001b[0m in \u001b[0;36murlopen\u001b[1;34m(url, data, timeout, cafile, capath, cadefault, context)\u001b[0m\n\u001b[0;32m 221\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 222\u001b[0m \u001b[0mopener\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0m_opener\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 223\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mopener\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0murl\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtimeout\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 224\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 225\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0minstall_opener\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mopener\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\urllib\\request.py\u001b[0m in \u001b[0;36mopen\u001b[1;34m(self, fullurl, data, timeout)\u001b[0m\n\u001b[0;32m 524\u001b[0m \u001b[0mreq\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmeth\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mreq\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 525\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 526\u001b[1;33m \u001b[0mresponse\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_open\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mreq\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 527\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 528\u001b[0m \u001b[1;31m# post-process response\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\urllib\\request.py\u001b[0m in \u001b[0;36m_open\u001b[1;34m(self, req, data)\u001b[0m\n\u001b[0;32m 542\u001b[0m \u001b[0mprotocol\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mreq\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtype\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 543\u001b[0m result = self._call_chain(self.handle_open, protocol, protocol +\n\u001b[1;32m--> 544\u001b[1;33m '_open', req)\n\u001b[0m\u001b[0;32m 545\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mresult\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 546\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\urllib\\request.py\u001b[0m in \u001b[0;36m_call_chain\u001b[1;34m(self, chain, kind, meth_name, *args)\u001b[0m\n\u001b[0;32m 502\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mhandler\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mhandlers\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 503\u001b[0m \u001b[0mfunc\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mhandler\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmeth_name\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 504\u001b[1;33m \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mfunc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 505\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mresult\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 506\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\urllib\\request.py\u001b[0m in \u001b[0;36mhttp_open\u001b[1;34m(self, req)\u001b[0m\n\u001b[0;32m 1344\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1345\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mhttp_open\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mreq\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1346\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdo_open\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mhttp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mclient\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mHTTPConnection\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mreq\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1347\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1348\u001b[0m \u001b[0mhttp_request\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mAbstractHTTPHandler\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdo_request_\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\urllib\\request.py\u001b[0m in \u001b[0;36mdo_open\u001b[1;34m(self, http_class, req, **http_conn_args)\u001b[0m\n\u001b[0;32m 1318\u001b[0m encode_chunked=req.has_header('Transfer-encoding'))\n\u001b[0;32m 1319\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mOSError\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[1;33m:\u001b[0m \u001b[1;31m# timeout error\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1320\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0mURLError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0merr\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1321\u001b[0m \u001b[0mr\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mh\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mgetresponse\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1322\u001b[0m \u001b[1;32mexcept\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;31mURLError\u001b[0m: <urlopen error [WinError 10060] A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond>" - ] + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>City</th>\n", + " <th>Colors Reported</th>\n", + " <th>Shape Reported</th>\n", + " <th>State</th>\n", + " <th>Time</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>833</th>\n", + " <td>Oklahoma City</td>\n", + " <td>NaN</td>\n", + " <td>LIGHT</td>\n", + " <td>OK</td>\n", + " <td>7/15/1963 22:00</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15130</th>\n", + " <td>Lowell</td>\n", + " <td>NaN</td>\n", + " <td>RECTANGLE</td>\n", + " <td>IN</td>\n", + " <td>11/16/1999 18:00</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8081</th>\n", + " <td>Lebanon</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>OR</td>\n", + " <td>5/6/1995 23:30</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " City Colors Reported Shape Reported State Time\n", + "833 Oklahoma City NaN LIGHT OK 7/15/1963 22:00\n", + "15130 Lowell NaN RECTANGLE IN 11/16/1999 18:00\n", + "8081 Lebanon NaN NaN OR 5/6/1995 23:30" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -142,7 +178,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -161,7 +197,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -180,7 +216,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -202,7 +238,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -225,14 +261,14 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD8CAYAAACRkhiPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAEq9JREFUeJzt3X+MXWd95/H3p6GgLgURyEBdO+kkyCAF1B1glI3EglLRQhJWDVSC2qog/NgaqmTbaPcPElbaoFapopaUFLVNZYqVRIKEaNM0VnGBgErTSgQyTt3EIQSc4JLBxp4mK5qKKquY7/5xz6wvzvy8P2bG87xf0uje+73POec5Psl85jzn3OemqpAktemn1rsDkqT1YwhIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGva89e7Acs4666yanJxc725I0mlj//79/1JVEytpu+FDYHJykpmZmfXuhiSdNpL880rbOhwkSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJatiyIZBkT5LjSQ721T6X5ED3czjJga4+meTf+977875l3pDkoSSHknwyScazS5KklVrJJ4ZvBv4EuHW+UFW/Pv88yQ3AD/vaP1ZVUwus5yZgF3AfsA+4GPib1XdZ0ulm8urPr6jd4evfPuae6FTLnglU1b3AUwu91/01/27gtqXWkWQL8OKq+lpVFb1AecfquytJGqVhrwm8CThWVd/pq52b5B+T/F2SN3W1rcBsX5vZrragJLuSzCSZmZubG7KLkqTFDBsCO/nJs4CjwDlV9TrgvwOfTfJiYKHx/1pspVW1u6qmq2p6YmJFE+FJkgYw8CyiSZ4H/BrwhvlaVT0DPNM935/kMeBV9P7y39a3+DbgyKDbliSNxjBnAr8MfKuq/v8wT5KJJGd0z88DtgOPV9VR4OkkF3bXEd4L3D3EtiVJI7CSW0RvA74GvDrJbJIPdm/t4LkXhN8MPJjkn4D/DXy4quYvKv8W8BfAIeAxvDNIktbdssNBVbVzkfr7FqjdCdy5SPsZ4LWr7J8kaYz8xLAkNcwQkKSGGQKS1DBDQJIaZghIUsMMAUlqmCEgSQ0beNoIScNZyfTKTq2scfNMQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJapghIEkNWzYEkuxJcjzJwb7ax5J8P8mB7ufSvveuSXIoyaNJ3tZXv7irHUpy9eh3RZK0Wis5E7gZuHiB+ieqaqr72QeQ5HxgB/Cabpk/S3JGkjOAPwUuAc4HdnZtJUnraNmppKvq3iSTK1zfZcDtVfUM8N0kh4ALuvcOVdXjAElu79p+c9U9liSNzDDXBK5M8mA3XHRmV9sKPNHXZrarLVaXJK2jQUPgJuCVwBRwFLihq2eBtrVEfUFJdiWZSTIzNzc3YBclScsZKASq6lhVnaiqHwOf4uSQzyxwdl/TbcCRJeqLrX93VU1X1fTExMQgXZQkrcBAIZBkS9/LdwLzdw7tBXYkeUGSc4HtwDeA+4HtSc5N8nx6F4/3Dt5tSdIoLHthOMltwEXAWUlmgWuBi5JM0RvSOQx8CKCqHk5yB70Lvs8CV1TViW49VwJfBM4A9lTVwyPfG0nSqqzk7qCdC5Q/vUT764DrFqjvA/atqneSpLHyE8OS1DBDQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJapghIEkNMwQkqWGGgCQ1zBCQpIYZApLUsGW/WUzS6Wny6s8v2+bw9W9fg55oI/NMQJIaZghIUsOWDYEke5IcT3Kwr/aHSb6V5MEkdyV5SVefTPLvSQ50P3/et8wbkjyU5FCSTybJeHZJkrRSKzkTuBm4+JTaPcBrq+oXgW8D1/S991hVTXU/H+6r3wTsArZ3P6euU5K0xpYNgaq6F3jqlNqXqurZ7uV9wLal1pFkC/DiqvpaVRVwK/COwbosSRqVUVwT+ADwN32vz03yj0n+LsmbutpWYLavzWxXkySto6FuEU3yP4Fngc90paPAOVX1ZJI3AH+V5DXAQuP/tcR6d9EbOuKcc84ZpouSpCUMfCaQ5HLgvwC/0Q3xUFXPVNWT3fP9wGPAq+j95d8/ZLQNOLLYuqtqd1VNV9X0xMTEoF2UJC1joBBIcjHwEeBXq+pHffWJJGd0z8+jdwH48ao6Cjyd5MLurqD3AncP3XtJ0lCWHQ5KchtwEXBWklngWnp3A70AuKe70/O+7k6gNwO/m+RZ4ATw4aqav6j8W/TuNPoZetcQ+q8jrImrvnAVB35wYK03Ky3oB89/ctk2F938hxt2/auxkr7A2vXndDD1c1PcePGNY9/OsiFQVTsXKH96kbZ3Ancu8t4M8NpV9U6SNFZNzR20FqkqrdRK5vb56vsGn9tn3OtfjZX0BdauPzrJaSMkqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSwwwBSWqYISBJDWvqw2Kj5hd5q1Ur/fCX//1vfJ4JSFLDDAFJapghIEkNMwQkqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSwwwBSWrYikIgyZ4kx5Mc7Ku9NMk9Sb7TPZ7Z1ZPkk0kOJXkwyev7lrm8a/+dJJePfnckSaux0jOBm4GLT6ldDXylqrYDX+leA1wCbO9+dgE3QS80gGuB/wRcAFw7HxySpPWxognkqureJJOnlC8DLuqe3wJ8FfhIV7+1qgq4L8lLkmzp2t5TVU8BJLmHXrDcNtQejJATwklqzTDXBF5RVUcBuseXd/WtwBN97Wa72mJ1SdI6GceF4SxQqyXqz11BsivJTJKZubm5kXZOknTSMCFwrBvmoXs83tVngbP72m0DjixRf46q2l1V01U1PTExMUQXJUlLGeZLZfYClwPXd49399WvTHI7vYvAP6yqo0m+CPx+38XgtwLXDLF9Nc5rONLwVhQCSW6jd2H3rCSz9O7yuR64I8kHge8B7+qa7wMuBQ4BPwLeD1BVTyX5PeD+rt3vzl8kliStj5XeHbRzkbfeskDbAq5YZD17gD0r7p0kaaz8juFNxOERSatlCGjFVhsyhpK08Tl3kCQ1zBCQpIYZApLUMENAkhrmhWFJG85KbioAbywYBc8EJKlhhoAkNcwQkKSGGQKS1DBDQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktSwpiaQu+oqOHBg8fd/8PiFy67jovsGbz9u4+7PuP997nv8yWXbX3jeywZe/0az0Y7XqNfdv/5xt9+MpqbgxhvHvx3PBCSpYQOfCSR5NfC5vtJ5wP8CXgL8JjDX1T9aVfu6Za4BPgicAH67qr446PYHsVyqTl69/J8VX/2J79BdXftxG3d/xv3vc7r/+6/WRjteo153//rH3V6DGzgEqupRYAogyRnA94G7gPcDn6iqj/e3T3I+sAN4DfDzwJeTvKqqTgzaB0nScEY1HPQW4LGq+ucl2lwG3F5Vz1TVd4FDwAUj2r4kaQCjCoEdwG19r69M8mCSPUnO7GpbgSf62sx2tedIsivJTJKZubm5hZpIkkZg6LuDkjwf+FXgmq50E/B7QHWPNwAfALLA4rXQOqtqN7AbYHp6esE2kjQov77ypFHcInoJ8EBVHQOYfwRI8ingr7uXs8DZfcttA46MYPvShrCSXywt/FLR6WUUw0E76RsKSrKl7713Age753uBHUlekORcYDvwjRFsX5I0oKHOBJL8B+BXgA/1lf8gyRS9oZ7D8+9V1cNJ7gC+CTwLXOGdQZK0voYKgar6EfCyU2rvWaL9dcB1w2xTkjQ6fmJYkhpmCEhSwwwBSWqYISBJDTMEJKlhhoAkNcwQkKSGGQKS1DBDQJIa1tR3DJ9unJBM2hg286yjnglIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJatjQ00YkOQw8DZwAnq2q6SQvBT4HTAKHgXdX1f9JEuCPgUuBHwHvq6oHhu2DpLZt5mkdxm1UZwK/VFVTVTXdvb4a+EpVbQe+0r0GuATY3v3sAm4a0fYlSQMY13DQZcAt3fNbgHf01W+tnvuAlyTZMqY+SJKWMYoQKOBLSfYn2dXVXlFVRwG6x5d39a3AE33Lzna1n5BkV5KZJDNzc3Mj6KIkaSGjmEr6jVV1JMnLgXuSfGuJtlmgVs8pVO0GdgNMT08/531J0mgMHQJVdaR7PJ7kLuAC4FiSLVV1tBvuOd41nwXO7lt8G3Bk2D5ILfD7JTQOQw0HJXlhkhfNPwfeChwE9gKXd80uB+7unu8F3pueC4Efzg8bSZLW3rBnAq8A7urd+cnzgM9W1ReS3A/ckeSDwPeAd3Xt99G7PfQQvVtE3z/k9iWNiGcabRoqBKrqceA/LlB/EnjLAvUCrhhmm5Kk0fE7hqVF+JexWuC0EZLUMENAkhpmCEhSw7wmsIYcY5a00XgmIEkNMwQkqWGGgCQ1zBCQpIal9yHejWt6erpmZmZGs7KrroIDBxZ9+77Hn1x2FRee97JN0361Nlr/3d/1a7+Sti23H4mpKbjxxoEWTbK/70u+luSZgCQ1rK0zgWWs9hbO0739am20/ru/69d+td/p21r79eaZgCRpRQwBSWqYISBJDTMEJKlhhoAkNcwQkKSGGQKS1DBDQJIaNnAIJDk7yd8meSTJw0l+p6t/LMn3kxzofi7tW+aaJIeSPJrkbaPYAUnS4Ib5Uplngf9RVQ8keRGwP8k93XufqKqP9zdOcj6wA3gN8PPAl5O8qqpODNEHSdIQBj4TqKqjVfVA9/xp4BFg6xKLXAbcXlXPVNV3gUPABYNuX5I0vJFcE0gyCbwO+HpXujLJg0n2JDmzq20FnuhbbJalQ0OSNGZDh0CSnwXuBK6qqn8FbgJeCUwBR4Eb5psusPiCs9cl2ZVkJsnM3NzcsF2UJC1iqBBI8tP0AuAzVfWXAFV1rKpOVNWPgU9xcshnFji7b/FtwJGF1ltVu6tquqqmJyYmhumiJGkJw9wdFODTwCNV9Ud99S19zd4JHOye7wV2JHlBknOB7cA3Bt2+JGl4w9wd9EbgPcBDSea/ruujwM4kU/SGeg4DHwKoqoeT3AF8k96dRVd4Z5Akra+BQ6Cq/oGFx/n3LbHMdcB1g25TkjRafmJYkhpmCEhSwwwBSWqYISBJDTMEJKlhhoAkNcwQkKSGGQKS1DBDQJIaNsy0EdJpZfLqzy/b5vD1b1+Dnkgbh2cCktSwTX0m4F9+krQ0zwQkqWGb+kxAS/NMSZJnApLUMENAkhpmCEhSwwwBSWqYISBJDTMEJKlhax4CSS5O8miSQ0muXuvtS5JOWtMQSHIG8KfAJcD5wM4k569lHyRJJ631mcAFwKGqeryq/i9wO3DZGvdBktRZ6xDYCjzR93q2q0mS1kGqau02lrwLeFtV/dfu9XuAC6rqv53Sbhewq3v5auDREXbjLOBfRri+ja6l/W1pX8H93eyG2d9fqKqJlTRc67mDZoGz+15vA46c2qiqdgO7x9GBJDNVNT2OdW9ELe1vS/sK7u9mt1b7u9bDQfcD25Ocm+T5wA5g7xr3QZLUWdMzgap6NsmVwBeBM4A9VfXwWvZBknTSmk8lXVX7gH1rvd0+Yxlm2sBa2t+W9hXc381uTfZ3TS8MS5I2FqeNkKSGNRMCrU1XkeRwkoeSHEgys979GbUke5IcT3Kwr/bSJPck+U73eOZ69nGUFtnfjyX5fneMDyS5dD37OEpJzk7yt0keSfJwkt/p6pvyGC+xv2M/xk0MB3XTVXwb+BV6t6neD+ysqm+ua8fGKMlhYLqqNuV91UneDPwbcGtVvbar/QHwVFVd3wX9mVX1kfXs56gssr8fA/6tqj6+nn0bhyRbgC1V9UCSFwH7gXcA72MTHuMl9vfdjPkYt3Im4HQVm0xV3Qs8dUr5MuCW7vkt9P4n2hQW2d9Nq6qOVtUD3fOngUfozS6wKY/xEvs7dq2EQIvTVRTwpST7u09gt+AVVXUUev9TAS9f5/6shSuTPNgNF22KoZFTJZkEXgd8nQaO8Sn7C2M+xq2EQBaobfZxsDdW1evpzdh6RTecoM3lJuCVwBRwFLhhfbszekl+FrgTuKqq/nW9+zNuC+zv2I9xKyGwoukqNpOqOtI9Hgfuojckttkd68ZW58dYj69zf8aqqo5V1Ymq+jHwKTbZMU7y0/R+IX6mqv6yK2/aY7zQ/q7FMW4lBJqariLJC7uLSyR5IfBW4ODSS20Ke4HLu+eXA3evY1/Gbv6XYeedbKJjnCTAp4FHquqP+t7alMd4sf1di2PcxN1BAN2tVTdycrqK69a5S2OT5Dx6f/1D71Phn91s+5vkNuAiejMtHgOuBf4KuAM4B/ge8K6q2hQXUxfZ34voDRMUcBj40Px4+ekuyX8G/h54CPhxV/4ovXHyTXeMl9jfnYz5GDcTApKk52plOEiStABDQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhv0/wHNHa2eXNdIAAAAASUVORK5CYII=\n", "text/plain": [ - "<matplotlib.figure.Figure at 0xae98dd8>" + "<matplotlib.figure.Figure at 0x248b1a691d0>" ] }, "metadata": {}, @@ -244,7 +280,7 @@ "Text(0.5,0,'None')" ] }, - "execution_count": 15, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, @@ -252,7 +288,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEKCAYAAAARnO4WAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAADtRJREFUeJzt3XGM33ddx/Hni5VJhDmMLYa0hc3YOZqFOLjMEQyMgKRbTJuYhbRhIrjQBB0YQJIZDOD4Q4UQDLEKVXFChDH4AxpSUhMcQYGS3pxM2qXJWZBdRrICc/6xsDF5+8fvN+7n7dr77u53d+Xez0fS7L6/3+f3u/c+uT776/fu922qCknS5ve0jR5AkrQ+DL4kNWHwJakJgy9JTRh8SWrC4EtSE8sGP8lHkzyY5JvnuD9JPpRkLsm9SV40/TElSas15BX+7cCe89x/PbBr/Osg8NerH0uSNG3LBr+qvgz84DxL9gEfq5HjwLOTPHdaA0qSpmPLFJ5jO3D/xPH8+LbvLl6Y5CCjvwXwzGc+88VXXnnlFD69JPVx9913f6+qtq3ksdMIfpa4bcnrNVTVYeAwwMzMTM3Ozk7h00tSH0n+a6WPncZP6cwDOyeOdwAPTOF5JUlTNI3gHwFeN/5pnWuBh6vqSadzJEkba9lTOkk+CVwHbE0yD7wbeDpAVX0YOArcAMwBjwBvWKthJUkrt2zwq+rAMvcX8PtTm0iStCZ8p60kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNDAp+kj1JTieZS3LrEvc/L8ldSe5Jcm+SG6Y/qiRpNZYNfpKLgEPA9cBu4ECS3YuW/TFwZ1VdDewH/mrag0qSVmfIK/xrgLmqOlNVjwF3APsWrSng58YfXwo8ML0RJUnTMCT424H7J47nx7dNeg9wU5J54Cjw5qWeKMnBJLNJZs+ePbuCcSVJKzUk+Fnitlp0fAC4vap2ADcAH0/ypOeuqsNVNVNVM9u2bXvq00qSVmxI8OeBnRPHO3jyKZubgTsBquprwDOArdMYUJI0HUOCfwLYleTyJBcz+qbskUVrvgO8EiDJCxgF33M2knQBWTb4VfU4cAtwDLiP0U/jnExyW5K942VvB96Y5BvAJ4HXV9Xi0z6SpA20ZciiqjrK6Juxk7e9a+LjU8BLpzuaJGmafKetJDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJamJQcFPsifJ6SRzSW49x5rXJDmV5GSST0x3TEnSam1ZbkGSi4BDwG8A88CJJEeq6tTEml3AHwEvraqHkjxnrQaWJK3MkFf41wBzVXWmqh4D7gD2LVrzRuBQVT0EUFUPTndMSdJqDQn+duD+ieP58W2TrgCuSPKVJMeT7FnqiZIcTDKbZPbs2bMrm1iStCJDgp8lbqtFx1uAXcB1wAHgb5M8+0kPqjpcVTNVNbNt27anOqskaRWGBH8e2DlxvAN4YIk1n6uqH1XVt4DTjP4AkCRdIIYE/wSwK8nlSS4G9gNHFq35LPAKgCRbGZ3iOTPNQSVJq7Ns8KvqceAW4BhwH3BnVZ1McluSveNlx4DvJzkF3AW8o6q+v1ZDS5KeulQtPh2/PmZmZmp2dnZDPrck/bRKcndVzazksb7TVpKaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYGBT/JniSnk8wlufU8625MUklmpjeiJGkalg1+kouAQ8D1wG7gQJLdS6y7BHgL8PVpDylJWr0hr/CvAeaq6kxVPQbcAexbYt17gfcBP5zifJKkKRkS/O3A/RPH8+PbfiLJ1cDOqvr8+Z4oycEks0lmz549+5SHlSSt3JDgZ4nb6id3Jk8DPgi8fbknqqrDVTVTVTPbtm0bPqUkadWGBH8e2DlxvAN4YOL4EuAq4EtJvg1cCxzxG7eSdGEZEvwTwK4klye5GNgPHHnizqp6uKq2VtVlVXUZcBzYW1WzazKxJGlFlg1+VT0O3AIcA+4D7qyqk0luS7J3rQeUJE3HliGLquoocHTRbe86x9rrVj+WJGnafKetJDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJamJQcFPsifJ6SRzSW5d4v63JTmV5N4kX0zy/OmPKklajWWDn+Qi4BBwPbAbOJBk96Jl9wAzVfVC4DPA+6Y9qCRpdYa8wr8GmKuqM1X1GHAHsG9yQVXdVVWPjA+PAzumO6YkabWGBH87cP/E8fz4tnO5GfjCUnckOZhkNsns2bNnh08pSVq1IcHPErfVkguTm4AZ4P1L3V9Vh6tqpqpmtm3bNnxKSdKqbRmwZh7YOXG8A3hg8aIkrwLeCby8qh6dzniSpGkZ8gr/BLAryeVJLgb2A0cmFyS5GvgIsLeqHpz+mJKk1Vo2+FX1OHALcAy4D7izqk4muS3J3vGy9wPPAj6d5N+THDnH00mSNsiQUzpU1VHg6KLb3jXx8aumPJckacp8p60kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNDAp+kj1JTieZS3LrEvf/TJJPje//epLLpj2oJGl1lg1+kouAQ8D1wG7gQJLdi5bdDDxUVb8MfBD482kPKklanSGv8K8B5qrqTFU9BtwB7Fu0Zh/wD+OPPwO8MkmmN6YkabW2DFizHbh/4nge+LVzramqx5M8DPwC8L3JRUkOAgfHh48m+eZKht6EtrJorxpzLxa4FwvciwW/stIHDgn+Uq/UawVrqKrDwGGAJLNVNTPg82967sUC92KBe7HAvViQZHaljx1ySmce2DlxvAN44FxrkmwBLgV+sNKhJEnTNyT4J4BdSS5PcjGwHziyaM0R4HfGH98I/HNVPekVviRp4yx7Smd8Tv4W4BhwEfDRqjqZ5DZgtqqOAH8HfDzJHKNX9vsHfO7Dq5h7s3EvFrgXC9yLBe7FghXvRXwhLkk9+E5bSWrC4EtSE2sefC/LsGDAXrwtyakk9yb5YpLnb8Sc62G5vZhYd2OSSrJpfyRvyF4kec34a+Nkkk+s94zrZcDvkecluSvJPePfJzdsxJxrLclHkzx4rvcqZeRD4326N8mLBj1xVa3ZL0bf5P1P4JeAi4FvALsXrfk94MPjj/cDn1rLmTbq18C9eAXws+OP39R5L8brLgG+DBwHZjZ67g38utgF3AP8/Pj4ORs99wbuxWHgTeOPdwPf3ui512gvXga8CPjmOe6/AfgCo/dAXQt8fcjzrvUrfC/LsGDZvaiqu6rqkfHhcUbvediMhnxdALwXeB/ww/Ucbp0N2Ys3Aoeq6iGAqnpwnWdcL0P2ooCfG398KU9+T9CmUFVf5vzvZdoHfKxGjgPPTvLc5Z53rYO/1GUZtp9rTVU9DjxxWYbNZsheTLqZ0Z/gm9Gye5HkamBnVX1+PQfbAEO+Lq4ArkjylSTHk+xZt+nW15C9eA9wU5J54Cjw5vUZ7YLzVHsCDLu0wmpM7bIMm8Dg/88kNwEzwMvXdKKNc969SPI0Rlddff16DbSBhnxdbGF0Wuc6Rn/r+5ckV1XVf6/xbOttyF4cAG6vqg8keQmj9/9cVVU/XvvxLigr6uZav8L3sgwLhuwFSV4FvBPYW1WPrtNs6225vbgEuAr4UpJvMzpHeWSTfuN26O+Rz1XVj6rqW8BpRn8AbDZD9uJm4E6Aqvoa8AxGF1brZlBPFlvr4HtZhgXL7sX4NMZHGMV+s56nhWX2oqoerqqtVXVZVV3G6PsZe6tqxReNuoAN+T3yWUbf0CfJVkaneM6s65TrY8hefAd4JUCSFzAK/tl1nfLCcAR43finda4FHq6q7y73oDU9pVNrd1mGnzoD9+L9wLOAT4+/b/2dqtq7YUOvkYF70cLAvTgGvDrJKeB/gXdU1fc3buq1MXAv3g78TZK3MjqF8frN+AIxyScZncLbOv5+xbuBpwNU1YcZff/iBmAOeAR4w6Dn3YR7JUlagu+0laQmDL4kNWHwJakJgy9JTRh8SWrC4GvTG19t8wMTx3+Y5D0bOJK0IQy+OngU+K3xm5aktgy+Onic0WV137r4jiTPH//bA0/8GwTPG99++/h6419NcibJjROPeUeSE+PH/Mn6/W9Iq2Pw1cUh4LVJLl10+18yuszsC4F/BD40cd9zgV8HfhP4M4Akr2Z0HZtrgF8FXpzkZWs8uzQVBl8tVNX/AB8D3rLorpcAT/wLUh9nFPgnfLaqflxVp4BfHN/26vGve4B/A65kc17ITJvQWl8eWbqQ/AWjSP/9edZMXmtk8mqlmfjvn1bVR6Y8m7TmfIWvNqrqB4wurXvzxM1fZeGCfa8F/nWZpzkG/G6SZwEk2Z7kOdOeVVoLBl/dfID/f/30twBvSHIv8NvAH5zvwVX1T4xOAX0tyX8w+mc5L1mjWaWp8mqZktSEr/AlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJv4PFsyxeorkq3kAAAAASUVORK5CYII=\n", "text/plain": [ - "<matplotlib.figure.Figure at 0xb1cc588>" + "<matplotlib.figure.Figure at 0x248b1dd0cc0>" ] }, "metadata": {}, @@ -271,14 +307,14 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAEB9JREFUeJzt3X+MZWV9x/H3p4A2UVK1OwouOy62+4c0bUEnq4amwfgLVuOqlQSaKJqaaQy0mtg/Vk2wMWlC/6g2FiJdhYCNgkZFtmFbBKRB00jYJSuwbIkrgTLuBlZoQKKtWfn2jznU6XBnZ3bO2XuXed6v5OaeHw/n+xzu7HzmOefcc1JVSJLa8xuT7oAkaTIMAElqlAEgSY0yACSpUQaAJDXKAJCkRvUOgCQbktyeZF+SvUk+OqLNOUmeTLKne13at64kqZ8TB9jGYeDjVXV3kpOB3Uluqar7F7X7XlW9c4B6kqQB9B4BVNXBqrq7m/4ZsA9Y33e7kqRja4gRwP9JshE4C7hzxOo3JvkhcAD4q6rau9z21q1bVxs3bhyyi5K0pu3evfunVTW1kraDBUCSFwPfBD5WVU8tWn038KqqejrJFuDbwKYltjMLzAJMT0+za9euobooSWtekodX2naQq4CSnMT8L/+vVNW3Fq+vqqeq6ulueidwUpJ1o7ZVVduraqaqZqamVhRikqRVGOIqoABXAfuq6rNLtDmla0eSzV3dx/vWliSt3hCHgM4G3g/cm2RPt+yTwDRAVV0JvA/4SJLDwC+AC8rbkErSRPUOgKr6PpBl2lwOXN63liRpOH4TWJIaZQBIUqMMAElqlAEgSY0a9JvAkjS0jdtuWlG7hy57xzHuydrjCECSGmUASFKjDABJapQBIEmNMgAkqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWrUEI+E3JDk9iT7kuxN8tERbZLk80n2J7knyWv71pUk9TPEzeAOAx+vqruTnAzsTnJLVd2/oM15wKbu9XrgC927JGlCeo8AqupgVd3dTf8M2AesX9RsK/DlmvcD4CVJTu1bW5K0eoOeA0iyETgLuHPRqvXAIwvm53huSEiSxmiw5wEkeTHwTeBjVfXU4tUj/pNaYjuzwCzA9PT0UN2Tnre8H76OlUFGAElOYv6X/1eq6lsjmswBGxbMnwYcGLWtqtpeVTNVNTM1NTVE9yRJIwxxFVCAq4B9VfXZJZrtAD7QXQ30BuDJqjrYt7YkafWGOAR0NvB+4N4ke7plnwSmAarqSmAnsAXYD/wc+NAAdSVJPfQOgKr6PqOP8S9sU8DFfWtJkobjN4ElqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWqUASBJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0a6pnAVyd5LMl9S6w/J8mTSfZ0r0uHqCtJWr0hHgkJcA1wOfDlI7T5XlW9c6B6kqSeBhkBVNUdwBNDbEuSNB7jPAfwxiQ/TPIvSX5vjHUlSSMMdQhoOXcDr6qqp5NsAb4NbBrVMMksMAswPT09pu5JUnvGMgKoqqeq6ulueidwUpJ1S7TdXlUzVTUzNTU1ju5JUpPGEgBJTkmSbnpzV/fxcdSWJI02yCGgJNcB5wDrkswBnwZOAqiqK4H3AR9Jchj4BXBBVdUQtSVJqzNIAFTVhcusv5z5y0QlSccJvwksSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNGtfdQCUdxzZuu2nFbR+67B3HsCcaJ0cAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVGDBECSq5M8luS+JdYnyeeT7E9yT5LXDlFXkrR6Q40ArgHOPcL684BN3WsW+MJAdSVJqzRIAFTVHcATR2iyFfhyzfsB8JIkpw5RW5K0OuM6B7AeeGTB/Fy3TJI0IeMKgIxYViMbJrNJdiXZdejQoWPcLUlq17gCYA7YsGD+NODAqIZVtb2qZqpqZmpqaiydk6QWjSsAdgAf6K4GegPwZFUdHFNtSdIIg9wNNMl1wDnAuiRzwKeBkwCq6kpgJ7AF2A/8HPjQEHUlSas3SABU1YXLrC/g4iFqSZKG4TeBJalRBoAkNcoAkKRGGQCS1CifCSxpbFb67GGfOzweBkAPPkhb0vOZh4AkqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWqUASBJjTIAJKlRBoAkNWqQAEhybpIHkuxPsm3E+g8mOZRkT/f68BB1JUmr1/teQElOAK4A3sr8w9/vSrKjqu5f1PRrVXVJ33qSpGEMcTO4zcD+qnoQIMn1wFZgcQAc97xToaSWDHEIaD3wyIL5uW7ZYn+S5J4k30iyYYC6kqQehgiAjFhWi+b/GdhYVX8A3Apcu+TGktkku5LsOnTo0ADdkySNMkQAzAEL/6I/DTiwsEFVPV5V/9PNfhF43VIbq6rtVTVTVTNTU1MDdE+SNMoQ5wDuAjYlOR34CXAB8KcLGyQ5taoOdrPvAvYNUFdakudzpOX1DoCqOpzkEuBm4ATg6qram+QzwK6q2gH8ZZJ3AYeBJ4AP9q0rSepnkEdCVtVOYOeiZZcumP4E8IkhakmShuEzgdcoD4FIWo4BoFVbacjAr4PGYJKOH94LSJIaZQBIUqMMAElqlAEgSY3yJLCkNceLDVbGEYAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDVqkABIcm6SB5LsT7JtxPoXJvlat/7OJBuHqCtJWr3eAZDkBOAK4DzgDODCJGcsavZnwH9V1e8CnwP+tm9dSVI/Q4wANgP7q+rBqvolcD2wdVGbrcC13fQ3gDcnyQC1JUmrNMTN4NYDjyyYnwNev1Sb7iHyTwK/Dfx0gPpa47yxl3RspKr6bSA5H3h7VX24m38/sLmq/mJBm71dm7lu/sddm8dHbG8WmAWYnp5+3cMPP7yqfh2vvzRW069x7cvx+v9sHMb1eMu19FmupZ+XtfT5J9ldVTMraTvEIaA5YMOC+dOAA0u1SXIi8FvAE6M2VlXbq2qmqmampqYG6J4kaZQhAuAuYFOS05O8ALgA2LGozQ7gom76fcB3q+/QQ5LUS+9zAN0x/UuAm4ETgKuram+SzwC7qmoHcBXwT0n2M/+X/wV960qS+hnkiWBVtRPYuWjZpQum/xs4f4hakqRh+EhISVqF58PJ7eV4KwhJapQjAGmM1sJfjVo7HAFIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmN8l5AzwPeP0ZaG463f8uOACSpUb0CIMnLktyS5Efd+0uXaPerJHu61+LHRUqSJqDvCGAbcFtVbQJu6+ZH+UVVndm93tWzpiRpAH0DYCtwbTd9LfDuntuTJI1J3wB4RVUdBOjeX75Eu99MsivJD5IYEpJ0HFj2KqAktwKnjFj1qaOoM11VB5K8Gvhuknur6sdL1JsFZgGmp6ePooQk6WgsGwBV9Zal1iV5NMmpVXUwyanAY0ts40D3/mCSfwPOAkYGQFVtB7YDzMzM1LJ7IElalb6HgHYAF3XTFwE3Lm6Q5KVJXthNrwPOBu7vWVeS1FPfALgMeGuSHwFv7eZJMpPkS12b1wC7kvwQuB24rKoMAEmasF7fBK6qx4E3j1i+C/hwN/3vwO/3qSNJGp63gpDUvOPtFg3j4q0gJKlRBoAkNcoAkKRGGQCS1ChPAktrUKsnNXV0HAFIUqMcAUhaFUcZz3+OACSpUY4ApFXyL2A93zkCkKRGGQCS1CgDQJIa5TmAMfO4saTjhSMASWqUASBJjeoVAEnOT7I3yTNJZo7Q7twkDyTZn2Rbn5qSpGH0HQHcB7wXuGOpBklOAK4AzgPOAC5MckbPupKknvo+EnIfQJIjNdsM7K+qB7u21wNb8cHwkjRR4zgHsB54ZMH8XLdMkjRBy44AktwKnDJi1aeq6sYV1Bg1PKgj1JsFZgGmp6dXsHlJ0mosGwBV9ZaeNeaADQvmTwMOHKHedmA7wMzMzJJBIUnqZxyHgO4CNiU5PckLgAuAHWOoK0k6gr6Xgb4nyRzwRuCmJDd3y1+ZZCdAVR0GLgFuBvYBX6+qvf26LUnqq+9VQDcAN4xYfgDYsmB+J7CzTy1J0rD8JrAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVF9nwh2fpK9SZ5JMnOEdg8luTfJniS7+tSUJA2j1xPBgPuA9wL/uIK2b6qqn/asJ0kaSN9HQu4DSDJMbyRJYzOucwAFfCfJ7iSzY6opSTqCZUcASW4FThmx6lNVdeMK65xdVQeSvBy4Jcl/VNUdS9SbBWYBpqenV7h5SdLRWjYAquotfYtU1YHu/bEkNwCbgZEBUFXbge0AMzMz1be2JGm0Y34IKMmLkpz87DTwNuZPHkuSJqjXSeAk7wH+AZgCbkqyp6renuSVwJeqagvwCuCG7kTxicBXq+pfe/ZbGtRDl71j0l2Qxq7vVUA3ADeMWH4A2NJNPwj8YZ86kqTh9f0ewHHLv+gk6ci8FYQkNWrNjgB09Bw1SW1xBCBJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY1K1fF7y/0kh4CHB9zkOqDl5xK7/+6/+7/2vaqqplbS8LgOgKEl2VVVM5Pux6S4/+6/+9/u/o/iISBJapQBIEmNai0Atk+6AxPm/rfN/df/09Q5AEnSr7U2ApAkdZoIgCTnJnkgyf4k2ybdn3FL8lCSe5PsSbJr0v0ZhyRXJ3ksyX0Llr0syS1JftS9v3SSfTxWltj3v07yk+5nYE+SLZPs47GUZEOS25PsS7I3yUe75U18/kdjzQdAkhOAK4DzgDOAC5OcMdleTcSbqurMhi6DuwY4d9GybcBtVbUJuK2bX4uu4bn7DvC57mfgzKraOeY+jdNh4ONV9RrgDcDF3b/5Vj7/FVvzAQBsBvZX1YNV9UvgemDrhPukY6yq7gCeWLR4K3BtN30t8O6xdmpMltj3ZlTVwaq6u5v+GbAPWE8jn//RaCEA1gOPLJif65a1pIDvJNmdZHbSnZmgV1TVQZj/JQG8fML9GbdLktzTHSJq4vBHko3AWcCd+Pk/RwsBkBHLWrv06eyqei3zh8EuTvLHk+6Qxu4LwO8AZwIHgb+bbHeOvSQvBr4JfKyqnpp0f45HLQTAHLBhwfxpwIEJ9WUiqupA9/4YcAPzh8Va9GiSUwG698cm3J+xqapHq+pXVfUM8EXW+M9AkpOY/+X/lar6Vre42c9/KS0EwF3ApiSnJ3kBcAGwY8J9GpskL0py8rPTwNuA+478X61ZO4CLuumLgBsn2JexevYXX+c9rOGfgSQBrgL2VdVnF6xq9vNfShNfBOsueft74ATg6qr6mwl3aWySvJr5v/oBTgS+2sL+J7kOOIf5O0A+Cnwa+DbwdWAa+E/g/KpacydLl9j3c5g//FPAQ8CfP3s8fK1J8kfA94B7gWe6xZ9k/jzAmv/8j0YTASBJeq4WDgFJkkYwACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJatT/AieUj5Gq0/4vAAAAAElFTkSuQmCC\n", "text/plain": [ - "<matplotlib.figure.Figure at 0x8919a90>" + "<matplotlib.figure.Figure at 0x248b1e7fa58>" ] }, "metadata": {}, @@ -298,14 +334,14 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAEU9JREFUeJzt3X2MZmV9xvHvVV5sorS+7Cq47LjY7h+lb2AniKFpaAQLaFy10kATBVMzjZFUEpt01QSNSRNaW0ssRroKERsVjYpsw1YEhaBpICxkBZYtdbvBMu7KIjQg0dYgv/4xj2Ucnnk953lmdu7vJ5nMebk5v/vMYeea+5zznJOqQpLUnl9a7Q5IklaHASBJjTIAJKlRBoAkNcoAkKRGGQCS1KjOAZBkc5Jbk+xLsjfJe4a0OTPJE0n2DL4u61pXktTN0T1s42ngvVV1T5LjgLuT3FxVD8xp962qekMP9SRJPeg8AqiqQ1V1z2D6R8A+YFPX7UqSRquPEcD/S7IFOBW4c8jq1yT5DnAQ+Muq2rvY9jZs2FBbtmzps4uStK7dfffdP6yqjUtp21sAJHkB8GXg0qp6cs7qe4BXVNVTSc4DvgpsnWc7U8AUwMTEBLt37+6ri5K07iX53lLb9nIXUJJjmPnl/9mq+src9VX1ZFU9NZjeBRyTZMOwbVXVjqqarKrJjRuXFGKSpBXo4y6gAFcD+6rqo/O0OX7QjiSnDeo+1rW2JGnl+jgFdAbwNuC+JHsGy94PTABU1VXAW4F3JXka+AlwQfkYUklaVZ0DoKq+DWSRNlcCV3atJUnqj58ElqRGGQCS1CgDQJIaZQBIUqN6/SSwJM21ZfuNS2r30OWvH3FPNJcjAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVF9vBJyc5Jbk+xLsjfJe4a0SZKPJdmf5N4kr+paV5LUTR8Pg3saeG9V3ZPkOODuJDdX1QOz2pwLbB18vRr4xOC7JGmVdB4BVNWhqrpnMP0jYB+waU6zbcBnasYdwAuTnNC1tiRp5Xq9BpBkC3AqcOecVZuAh2fNT/PckJAkjVFv7wNI8gLgy8ClVfXk3NVD/pOaZztTwBTAxMREX92T1pSlPCPf5+Nr1HoZASQ5hplf/p+tqq8MaTINbJ41fyJwcNi2qmpHVU1W1eTGjRv76J4kaYg+7gIKcDWwr6o+Ok+zncDbB3cDnQ48UVWHutaWJK1cH6eAzgDeBtyXZM9g2fuBCYCqugrYBZwH7Ad+DLyjh7qSpA46B0BVfZvh5/hntyng3V1rSZL64yeBJalRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmN6uudwNckOZzk/nnWn5nkiSR7Bl+X9VFXkrRyfbwSEuDTwJXAZxZo862qekNP9SRJHfUyAqiq24HH+9iWJGk8xnkN4DVJvpPkX5P85hjrSpKG6OsU0GLuAV5RVU8lOQ/4KrB1WMMkU8AUwMTExJi6J0ntGcsIoKqerKqnBtO7gGOSbJin7Y6qmqyqyY0bN46je5LUpLEEQJLjk2Qwfdqg7mPjqC1JGq6XU0BJPg+cCWxIMg18EDgGoKquAt4KvCvJ08BPgAuqqvqoLUlamV4CoKouXGT9lczcJipJWiP8JLAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDVqXE8DlTRGW7bfuGibhy5//Rh6orXMEYAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqVC8BkOSaJIeT3D/P+iT5WJL9Se5N8qo+6kqSVq6vEcCngXMWWH8usHXwNQV8oqe6kqQV6iUAqup24PEFmmwDPlMz7gBemOSEPmpLklZmXJ8E3gQ8PGt+erDs0Jjqc+nXLmXPD/aMq5y0oB8c+9iibc789EfW7PaXYyl9gfH150hwyvGncMU5V4y8zrguAmfIshraMJlKsjvJ7kcffXTE3ZKkdo1rBDANbJ41fyJwcFjDqtoB7ACYnJwcGhIrMY40lZZqKc/que3ilT+rZ9TbX46l9AXG1x89a1wjgJ3A2wd3A50OPFFVYzv9I0l6rl5GAEk+D5wJbEgyDXwQOAagqq4CdgHnAfuBHwPv6KOuJGnlegmAqrpwkfUFvLuPWpKkfvhJYElqlAEgSY0yACSpUQaAJDXKdwJLWpal3tfvO4fXPgNghXzptqQjnaeAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDWqlwBIck6SB5PsT7J9yPqLkzyaZM/g65191JUkrVznZwElOQr4OHA2My9/vyvJzqp6YE7TL1TVJV3rSZL60cfD4E4D9lfVAYAk1wHbgLkBsKb5cDdJrenjFNAm4OFZ89ODZXP9cZJ7k3wpyeYe6kqSOugjADJkWc2Z/xdgS1X9DnALcO28G0umkuxOsvvRRx/toXuSpGH6CIBpYPZf9CcCB2c3qKrHqup/B7OfBH5vvo1V1Y6qmqyqyY0bN/bQPUnSMH1cA7gL2JrkJOD7wAXAn85ukOSEqjo0mH0jsK+HumqY12yk7joHQFU9neQS4CbgKOCaqtqb5MPA7qraCfxFkjcCTwOPAxd3rStJ6qaXV0JW1S5g15xll82afh/wvj5qSZL64TuB1wlPiUhaLgNAS7LcgDGQpLXPZwFJUqMMAElqlAEgSY0yACSpUV4ElrSmLOUGAvAmgj44ApCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVEGgCQ1ygCQpEb1EgBJzknyYJL9SbYPWf+8JF8YrL8zyZY+6kqSVq5zACQ5Cvg4cC5wMnBhkpPnNPsz4L+r6teBfwD+pmtdSVI3fYwATgP2V9WBqvopcB2wbU6bbcC1g+kvAa9Nkh5qS5JWqI+HwW0CHp41Pw28er42g5fIPwG8BPhhD/WX5NJLYc+e+df/4MDpi27jzDtW3n7URt2fUf987jjw2KLtT3/lS1a8/bVmrR2vvrc9e/ujbr8enXIKXHHF6Ov0EQDD/pKvFbSZaZhMAVMAExMTK+7U3CcKPv7tk/np4V/5hWWzf6HMnl6K5bZf7i+45bYfdX9G/fM50n/+R/rxWs72j8RjO3u7o25/JOkjAKaBzbPmTwQOztNmOsnRwK8Cjw/bWFXtAHYATE5ODg2JlXjxWQ88Z9ltY3yc7Jbti/+5ctsvvFN3ee1H3Z8j3ah//kf68TqS/39YSt/h2f6Puv2RpI9rAHcBW5OclORY4AJg55w2O4GLBtNvBb5ZVb39cpckLV/nEcDgnP4lwE3AUcA1VbU3yYeB3VW1E7ga+Ock+5n5y/+CrnUlSd308kawqtoF7Jqz7LJZ0/8DnN9HLUlSP3wlpKSm+CrJZ/koCElqlCMAqQf+VakjkSMASWqUASBJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUT4LaI3y2TLS2rCe/y06ApCkRnUKgCQvTnJzku8Ovr9onnY/S7Jn8DX3dZGSpFXQdQSwHfhGVW0FvjGYH+YnVXXK4OuNHWtKknrQNQC2AdcOpq8F3tRxe5KkMekaAC+rqkMAg+8vnafdLyfZneSOJIaEJK0Bi94FlOQW4Pghqz6wjDoTVXUwySuBbya5r6r+c556U8AUwMTExDJKSJKWY9EAqKqz5luX5JEkJ1TVoSQnAIfn2cbBwfcDSW4DTgWGBkBV7QB2AExOTtaieyBJWpGup4B2AhcNpi8CbpjbIMmLkjxvML0BOAN4oGNdSVJHXQPgcuDsJN8Fzh7Mk2QyyacGbX4D2J3kO8CtwOVVZQBI0irr9EngqnoMeO2Q5buBdw6m/w347S51JEn981EQko5o6/lRDaPmoyAkqVEGgCQ1ygCQpEYZAJLUKC8CS0cAL3RqFBwBSFKjHAFIcoTRKEcAktQoRwDSEP5FrBY4ApCkRhkAktQoA0CSGuU1gDHxnLKktcYRgCQ1ygCQpEZ1CoAk5yfZm+SZJJMLtDsnyYNJ9ifZ3qWmJKkfXUcA9wNvAW6fr0GSo4CPA+cCJwMXJjm5Y11JUkddXwm5DyDJQs1OA/ZX1YFB2+uAbfhieElaVeO4C2gT8PCs+Wng1WOo+wsuu2UHJx8+8IsL7/jIuLuxZlx34LHFG62jn09r+6sj3CmnwBVXjLzMogGQ5Bbg+CGrPlBVNyyhxrDhQS1QbwqYApiYmFjC5iVJK7FoAFTVWR1rTAObZ82fCBxcoN4OYAfA5OTkvEGxXB8+a+o5y1q+N/+C7Tcu2mY9/Xxa219pKcZxG+hdwNYkJyU5FrgA2DmGupKkBXS9DfTNSaaB1wA3JrlpsPzlSXYBVNXTwCXATcA+4ItVtbdbtyVJXXW9C+h64Pohyw8C582a3wXs6lJLktQvPwksSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWpU1zeCnZ9kb5Jnkkwu0O6hJPcl2ZNkd5eakqR+dHojGHA/8Bbgn5bQ9g+r6ocd60mSetL1lZD7AJL00xtJ0tiM6xpAAV9PcneSqTHVlCQtYNERQJJbgOOHrPpAVd2wxDpnVNXBJC8Fbk7y71V1+zz1poApgImJiSVuXpK0XIsGQFWd1bVIVR0cfD+c5HrgNGBoAFTVDmAHwOTkZHWtLUkabuSngJI8P8lxP58GXsfMxWNJ0irqdBE4yZuBfwQ2Ajcm2VNVf5Tk5cCnquo84GXA9YMLxUcDn6uqr3Xst7QsD13++tXugrTmdL0L6Hrg+iHLDwLnDaYPAL/bpY4kqX9dPwewZvkXnyQtzEdBSFKj1u0IQAtzhCTJEYAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDUqVWv3kftJHgW+1+MmNwAtvZe4pf1taV/B/V3vuuzvK6pq41IarukA6FuS3VU1udr9GJeW9relfQX3d70b1/56CkiSGmUASFKjWguAHavdgTFraX9b2ldwf9e7sexvU9cAJEnPam0EIEkaaCIAkpyT5MEk+5NsX+3+jFqSh5Lcl2RPkt2r3Z++JbkmyeEk989a9uIkNyf57uD7i1azj32aZ38/lOT7g2O8J8l5q9nHPiXZnOTWJPuS7E3ynsHydXmMF9jfkR/jdX8KKMlRwH8AZwPTwF3AhVX1wKp2bISSPARMVtW6vG86yR8ATwGfqarfGiz7W+Dxqrp8EPIvqqq/Ws1+9mWe/f0Q8FRV/d1q9m0UkpwAnFBV9yQ5DrgbeBNwMevwGC+wv3/CiI9xCyOA04D9VXWgqn4KXAdsW+U+qYOquh14fM7ibcC1g+lrmfkHtC7Ms7/rVlUdqqp7BtM/AvYBm1inx3iB/R25FgJgE/DwrPlpxvTDXUUFfD3J3UmmVrszY/KyqjoEM/+ggJeucn/G4ZIk9w5OEa2L0yFzJdkCnArcSQPHeM7+woiPcQsBkCHL1vd5Lzijql4FnAu8e3AKQevLJ4BfA04BDgF/v7rd6V+SFwBfBi6tqidXuz+jNmR/R36MWwiAaWDzrPkTgYOr1JexqKqDg++HgeuZOQ223j0yOJf683Oqh1e5PyNVVY9U1c+q6hngk6yzY5zkGGZ+GX62qr4yWLxuj/Gw/R3HMW4hAO4CtiY5KcmxwAXAzlXu08gkef7gQhJJng+8Drh/4f9qXdgJXDSYvgi4YRX7MnI//0U48GbW0TFOEuBqYF9VfXTWqnV5jOfb33Ec43V/FxDA4PapK4CjgGuq6q9XuUsjk+SVzPzVD3A08Ln1tr9JPg+cycwTEx8BPgh8FfgiMAH8F3B+Va2LC6fz7O+ZzJwaKOAh4M9/fn78SJfk94FvAfcBzwwWv5+Z8+Lr7hgvsL8XMuJj3EQASJKeq4VTQJKkIQwASWqUASBJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIa9X+gQk7CmU6YZgAAAABJRU5ErkJggg==\n", "text/plain": [ - "<matplotlib.figure.Figure at 0xb2b8128>" + "<matplotlib.figure.Figure at 0x248b1efd048>" ] }, "metadata": {}, @@ -322,7 +358,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -354,7 +390,7 @@ " 621]" ] }, - "execution_count": 18, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -365,6 +401,13 @@ "friends" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "code", "execution_count": null,