diff --git a/Lab_dsa_3/Soal/Jawaban_Lab3_AriefTritomo_1506689061.ipynb b/Lab_dsa_3/Soal/Jawaban_Lab3_AriefTritomo_1506689061.ipynb
index f2d55a43cdb0ab22768d0082be08ba5c7c50ff47..5b14f94cd4d459685ac5bcf8605a6ff833cc68ae 100644
--- a/Lab_dsa_3/Soal/Jawaban_Lab3_AriefTritomo_1506689061.ipynb
+++ b/Lab_dsa_3/Soal/Jawaban_Lab3_AriefTritomo_1506689061.ipynb
@@ -2,7 +2,7 @@
  "cells": [
   {
    "cell_type": "code",
-   "execution_count": 40,
+   "execution_count": 2,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -17,7 +17,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 38,
+   "execution_count": 3,
    "metadata": {
     "scrolled": true
    },
@@ -1792,7 +1792,7 @@
        "[205 rows x 26 columns]"
       ]
      },
-     "execution_count": 38,
+     "execution_count": 3,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1805,7 +1805,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 21,
+   "execution_count": 4,
    "metadata": {
     "scrolled": true
    },
@@ -3580,7 +3580,7 @@
        "[159 rows x 26 columns]"
       ]
      },
-     "execution_count": 21,
+     "execution_count": 4,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -3593,1782 +3593,44 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 37,
+   "execution_count": 35,
    "metadata": {
     "scrolled": true
    },
    "outputs": [
     {
      "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>symboling</th>\n",
-       "      <th>normalized-losses</th>\n",
-       "      <th>make</th>\n",
-       "      <th>fuel-type</th>\n",
-       "      <th>aspiration</th>\n",
-       "      <th>num-of-doors</th>\n",
-       "      <th>body-style</th>\n",
-       "      <th>drive-wheels</th>\n",
-       "      <th>engine-location</th>\n",
-       "      <th>wheel-base</th>\n",
-       "      <th>...</th>\n",
-       "      <th>engine-size</th>\n",
-       "      <th>fuel-system</th>\n",
-       "      <th>bore</th>\n",
-       "      <th>stroke</th>\n",
-       "      <th>compression-ratio</th>\n",
-       "      <th>horsepower</th>\n",
-       "      <th>peak-rpm</th>\n",
-       "      <th>city-mpg</th>\n",
-       "      <th>highway-mpg</th>\n",
-       "      <th>price</th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>0</th>\n",
-       "      <td>3</td>\n",
-       "      <td>122.0</td>\n",
-       "      <td>alfa-romero</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>two</td>\n",
-       "      <td>convertible</td>\n",
-       "      <td>rwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>88.6</td>\n",
-       "      <td>...</td>\n",
-       "      <td>130</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.47</td>\n",
-       "      <td>2.68</td>\n",
-       "      <td>9.00</td>\n",
-       "      <td>111.0</td>\n",
-       "      <td>5000.0</td>\n",
-       "      <td>21</td>\n",
-       "      <td>27</td>\n",
-       "      <td>13495.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>3</td>\n",
-       "      <td>122.0</td>\n",
-       "      <td>alfa-romero</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>two</td>\n",
-       "      <td>convertible</td>\n",
-       "      <td>rwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>88.6</td>\n",
-       "      <td>...</td>\n",
-       "      <td>130</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.47</td>\n",
-       "      <td>2.68</td>\n",
-       "      <td>9.00</td>\n",
-       "      <td>111.0</td>\n",
-       "      <td>5000.0</td>\n",
-       "      <td>21</td>\n",
-       "      <td>27</td>\n",
-       "      <td>16500.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>1</td>\n",
-       "      <td>122.0</td>\n",
-       "      <td>alfa-romero</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>two</td>\n",
-       "      <td>hatchback</td>\n",
-       "      <td>rwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>94.5</td>\n",
-       "      <td>...</td>\n",
-       "      <td>152</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>2.68</td>\n",
-       "      <td>3.47</td>\n",
-       "      <td>9.00</td>\n",
-       "      <td>154.0</td>\n",
-       "      <td>5000.0</td>\n",
-       "      <td>19</td>\n",
-       "      <td>26</td>\n",
-       "      <td>16500.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>2</td>\n",
-       "      <td>164.0</td>\n",
-       "      <td>audi</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>99.8</td>\n",
-       "      <td>...</td>\n",
-       "      <td>109</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.19</td>\n",
-       "      <td>3.40</td>\n",
-       "      <td>10.00</td>\n",
-       "      <td>102.0</td>\n",
-       "      <td>5500.0</td>\n",
-       "      <td>24</td>\n",
-       "      <td>30</td>\n",
-       "      <td>13950.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>4</th>\n",
-       "      <td>2</td>\n",
-       "      <td>164.0</td>\n",
-       "      <td>audi</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>4wd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>99.4</td>\n",
-       "      <td>...</td>\n",
-       "      <td>136</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.19</td>\n",
-       "      <td>3.40</td>\n",
-       "      <td>8.00</td>\n",
-       "      <td>115.0</td>\n",
-       "      <td>5500.0</td>\n",
-       "      <td>18</td>\n",
-       "      <td>22</td>\n",
-       "      <td>17450.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>5</th>\n",
-       "      <td>2</td>\n",
-       "      <td>122.0</td>\n",
-       "      <td>audi</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>two</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>99.8</td>\n",
-       "      <td>...</td>\n",
-       "      <td>136</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.19</td>\n",
-       "      <td>3.40</td>\n",
-       "      <td>8.50</td>\n",
-       "      <td>110.0</td>\n",
-       "      <td>5500.0</td>\n",
-       "      <td>19</td>\n",
-       "      <td>25</td>\n",
-       "      <td>15250.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>6</th>\n",
-       "      <td>1</td>\n",
-       "      <td>158.0</td>\n",
-       "      <td>audi</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>105.8</td>\n",
-       "      <td>...</td>\n",
-       "      <td>136</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.19</td>\n",
-       "      <td>3.40</td>\n",
-       "      <td>8.50</td>\n",
-       "      <td>110.0</td>\n",
-       "      <td>5500.0</td>\n",
-       "      <td>19</td>\n",
-       "      <td>25</td>\n",
-       "      <td>17710.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>7</th>\n",
-       "      <td>1</td>\n",
-       "      <td>122.0</td>\n",
-       "      <td>audi</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>wagon</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>105.8</td>\n",
-       "      <td>...</td>\n",
-       "      <td>136</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.19</td>\n",
-       "      <td>3.40</td>\n",
-       "      <td>8.50</td>\n",
-       "      <td>110.0</td>\n",
-       "      <td>5500.0</td>\n",
-       "      <td>19</td>\n",
-       "      <td>25</td>\n",
-       "      <td>18920.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>8</th>\n",
-       "      <td>1</td>\n",
-       "      <td>158.0</td>\n",
-       "      <td>audi</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>turbo</td>\n",
-       "      <td>four</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>105.8</td>\n",
-       "      <td>...</td>\n",
-       "      <td>131</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.13</td>\n",
-       "      <td>3.40</td>\n",
-       "      <td>8.30</td>\n",
-       "      <td>140.0</td>\n",
-       "      <td>5500.0</td>\n",
-       "      <td>17</td>\n",
-       "      <td>20</td>\n",
-       "      <td>23875.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>9</th>\n",
-       "      <td>0</td>\n",
-       "      <td>122.0</td>\n",
-       "      <td>audi</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>turbo</td>\n",
-       "      <td>two</td>\n",
-       "      <td>hatchback</td>\n",
-       "      <td>4wd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>99.5</td>\n",
-       "      <td>...</td>\n",
-       "      <td>131</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.13</td>\n",
-       "      <td>3.40</td>\n",
-       "      <td>7.00</td>\n",
-       "      <td>160.0</td>\n",
-       "      <td>5500.0</td>\n",
-       "      <td>16</td>\n",
-       "      <td>22</td>\n",
-       "      <td>13207.129353</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>10</th>\n",
-       "      <td>2</td>\n",
-       "      <td>192.0</td>\n",
-       "      <td>bmw</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>two</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>rwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>101.2</td>\n",
-       "      <td>...</td>\n",
-       "      <td>108</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.50</td>\n",
-       "      <td>2.80</td>\n",
-       "      <td>8.80</td>\n",
-       "      <td>101.0</td>\n",
-       "      <td>5800.0</td>\n",
-       "      <td>23</td>\n",
-       "      <td>29</td>\n",
-       "      <td>16430.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>11</th>\n",
-       "      <td>0</td>\n",
-       "      <td>192.0</td>\n",
-       "      <td>bmw</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>rwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>101.2</td>\n",
-       "      <td>...</td>\n",
-       "      <td>108</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.50</td>\n",
-       "      <td>2.80</td>\n",
-       "      <td>8.80</td>\n",
-       "      <td>101.0</td>\n",
-       "      <td>5800.0</td>\n",
-       "      <td>23</td>\n",
-       "      <td>29</td>\n",
-       "      <td>16925.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>12</th>\n",
-       "      <td>0</td>\n",
-       "      <td>188.0</td>\n",
-       "      <td>bmw</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>two</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>rwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>101.2</td>\n",
-       "      <td>...</td>\n",
-       "      <td>164</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.31</td>\n",
-       "      <td>3.19</td>\n",
-       "      <td>9.00</td>\n",
-       "      <td>121.0</td>\n",
-       "      <td>4250.0</td>\n",
-       "      <td>21</td>\n",
-       "      <td>28</td>\n",
-       "      <td>20970.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>13</th>\n",
-       "      <td>0</td>\n",
-       "      <td>188.0</td>\n",
-       "      <td>bmw</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>rwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>101.2</td>\n",
-       "      <td>...</td>\n",
-       "      <td>164</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.31</td>\n",
-       "      <td>3.19</td>\n",
-       "      <td>9.00</td>\n",
-       "      <td>121.0</td>\n",
-       "      <td>4250.0</td>\n",
-       "      <td>21</td>\n",
-       "      <td>28</td>\n",
-       "      <td>21105.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>14</th>\n",
-       "      <td>1</td>\n",
-       "      <td>122.0</td>\n",
-       "      <td>bmw</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>rwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>103.5</td>\n",
-       "      <td>...</td>\n",
-       "      <td>164</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.31</td>\n",
-       "      <td>3.19</td>\n",
-       "      <td>9.00</td>\n",
-       "      <td>121.0</td>\n",
-       "      <td>4250.0</td>\n",
-       "      <td>20</td>\n",
-       "      <td>25</td>\n",
-       "      <td>24565.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>15</th>\n",
-       "      <td>0</td>\n",
-       "      <td>122.0</td>\n",
-       "      <td>bmw</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>rwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>103.5</td>\n",
-       "      <td>...</td>\n",
-       "      <td>209</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.62</td>\n",
-       "      <td>3.39</td>\n",
-       "      <td>8.00</td>\n",
-       "      <td>182.0</td>\n",
-       "      <td>5400.0</td>\n",
-       "      <td>16</td>\n",
-       "      <td>22</td>\n",
-       "      <td>30760.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>16</th>\n",
-       "      <td>0</td>\n",
-       "      <td>122.0</td>\n",
-       "      <td>bmw</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>two</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>rwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>103.5</td>\n",
-       "      <td>...</td>\n",
-       "      <td>209</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.62</td>\n",
-       "      <td>3.39</td>\n",
-       "      <td>8.00</td>\n",
-       "      <td>182.0</td>\n",
-       "      <td>5400.0</td>\n",
-       "      <td>16</td>\n",
-       "      <td>22</td>\n",
-       "      <td>41315.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>17</th>\n",
-       "      <td>0</td>\n",
-       "      <td>122.0</td>\n",
-       "      <td>bmw</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>rwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>110.0</td>\n",
-       "      <td>...</td>\n",
-       "      <td>209</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.62</td>\n",
-       "      <td>3.39</td>\n",
-       "      <td>8.00</td>\n",
-       "      <td>182.0</td>\n",
-       "      <td>5400.0</td>\n",
-       "      <td>15</td>\n",
-       "      <td>20</td>\n",
-       "      <td>36880.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>18</th>\n",
-       "      <td>2</td>\n",
-       "      <td>121.0</td>\n",
-       "      <td>chevrolet</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>two</td>\n",
-       "      <td>hatchback</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>88.4</td>\n",
-       "      <td>...</td>\n",
-       "      <td>61</td>\n",
-       "      <td>2bbl</td>\n",
-       "      <td>2.91</td>\n",
-       "      <td>3.03</td>\n",
-       "      <td>9.50</td>\n",
-       "      <td>48.0</td>\n",
-       "      <td>5100.0</td>\n",
-       "      <td>47</td>\n",
-       "      <td>53</td>\n",
-       "      <td>5151.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>19</th>\n",
-       "      <td>1</td>\n",
-       "      <td>98.0</td>\n",
-       "      <td>chevrolet</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>two</td>\n",
-       "      <td>hatchback</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>94.5</td>\n",
-       "      <td>...</td>\n",
-       "      <td>90</td>\n",
-       "      <td>2bbl</td>\n",
-       "      <td>3.03</td>\n",
-       "      <td>3.11</td>\n",
-       "      <td>9.60</td>\n",
-       "      <td>70.0</td>\n",
-       "      <td>5400.0</td>\n",
-       "      <td>38</td>\n",
-       "      <td>43</td>\n",
-       "      <td>6295.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>20</th>\n",
-       "      <td>0</td>\n",
-       "      <td>81.0</td>\n",
-       "      <td>chevrolet</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>94.5</td>\n",
-       "      <td>...</td>\n",
-       "      <td>90</td>\n",
-       "      <td>2bbl</td>\n",
-       "      <td>3.03</td>\n",
-       "      <td>3.11</td>\n",
-       "      <td>9.60</td>\n",
-       "      <td>70.0</td>\n",
-       "      <td>5400.0</td>\n",
-       "      <td>38</td>\n",
-       "      <td>43</td>\n",
-       "      <td>6575.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>21</th>\n",
-       "      <td>1</td>\n",
-       "      <td>118.0</td>\n",
-       "      <td>dodge</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>two</td>\n",
-       "      <td>hatchback</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>93.7</td>\n",
-       "      <td>...</td>\n",
-       "      <td>90</td>\n",
-       "      <td>2bbl</td>\n",
-       "      <td>2.97</td>\n",
-       "      <td>3.23</td>\n",
-       "      <td>9.41</td>\n",
-       "      <td>68.0</td>\n",
-       "      <td>5500.0</td>\n",
-       "      <td>37</td>\n",
-       "      <td>41</td>\n",
-       "      <td>5572.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>22</th>\n",
-       "      <td>1</td>\n",
-       "      <td>118.0</td>\n",
-       "      <td>dodge</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>two</td>\n",
-       "      <td>hatchback</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>93.7</td>\n",
-       "      <td>...</td>\n",
-       "      <td>90</td>\n",
-       "      <td>2bbl</td>\n",
-       "      <td>2.97</td>\n",
-       "      <td>3.23</td>\n",
-       "      <td>9.40</td>\n",
-       "      <td>68.0</td>\n",
-       "      <td>5500.0</td>\n",
-       "      <td>31</td>\n",
-       "      <td>38</td>\n",
-       "      <td>6377.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>23</th>\n",
-       "      <td>1</td>\n",
-       "      <td>118.0</td>\n",
-       "      <td>dodge</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>turbo</td>\n",
-       "      <td>two</td>\n",
-       "      <td>hatchback</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>93.7</td>\n",
-       "      <td>...</td>\n",
-       "      <td>98</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.03</td>\n",
-       "      <td>3.39</td>\n",
-       "      <td>7.60</td>\n",
-       "      <td>102.0</td>\n",
-       "      <td>5500.0</td>\n",
-       "      <td>24</td>\n",
-       "      <td>30</td>\n",
-       "      <td>7957.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>24</th>\n",
-       "      <td>1</td>\n",
-       "      <td>148.0</td>\n",
-       "      <td>dodge</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>hatchback</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>93.7</td>\n",
-       "      <td>...</td>\n",
-       "      <td>90</td>\n",
-       "      <td>2bbl</td>\n",
-       "      <td>2.97</td>\n",
-       "      <td>3.23</td>\n",
-       "      <td>9.40</td>\n",
-       "      <td>68.0</td>\n",
-       "      <td>5500.0</td>\n",
-       "      <td>31</td>\n",
-       "      <td>38</td>\n",
-       "      <td>6229.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>25</th>\n",
-       "      <td>1</td>\n",
-       "      <td>148.0</td>\n",
-       "      <td>dodge</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>93.7</td>\n",
-       "      <td>...</td>\n",
-       "      <td>90</td>\n",
-       "      <td>2bbl</td>\n",
-       "      <td>2.97</td>\n",
-       "      <td>3.23</td>\n",
-       "      <td>9.40</td>\n",
-       "      <td>68.0</td>\n",
-       "      <td>5500.0</td>\n",
-       "      <td>31</td>\n",
-       "      <td>38</td>\n",
-       "      <td>6692.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>26</th>\n",
-       "      <td>1</td>\n",
-       "      <td>148.0</td>\n",
-       "      <td>dodge</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>93.7</td>\n",
-       "      <td>...</td>\n",
-       "      <td>90</td>\n",
-       "      <td>2bbl</td>\n",
-       "      <td>2.97</td>\n",
-       "      <td>3.23</td>\n",
-       "      <td>9.40</td>\n",
-       "      <td>68.0</td>\n",
-       "      <td>5500.0</td>\n",
-       "      <td>31</td>\n",
-       "      <td>38</td>\n",
-       "      <td>7609.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>28</th>\n",
-       "      <td>-1</td>\n",
-       "      <td>110.0</td>\n",
-       "      <td>dodge</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>wagon</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>103.3</td>\n",
-       "      <td>...</td>\n",
-       "      <td>122</td>\n",
-       "      <td>2bbl</td>\n",
-       "      <td>3.34</td>\n",
-       "      <td>3.46</td>\n",
-       "      <td>8.50</td>\n",
-       "      <td>88.0</td>\n",
-       "      <td>5000.0</td>\n",
-       "      <td>24</td>\n",
-       "      <td>30</td>\n",
-       "      <td>8921.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>29</th>\n",
-       "      <td>3</td>\n",
-       "      <td>145.0</td>\n",
-       "      <td>dodge</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>turbo</td>\n",
-       "      <td>two</td>\n",
-       "      <td>hatchback</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>95.9</td>\n",
-       "      <td>...</td>\n",
-       "      <td>156</td>\n",
-       "      <td>mfi</td>\n",
-       "      <td>3.60</td>\n",
-       "      <td>3.90</td>\n",
-       "      <td>7.00</td>\n",
-       "      <td>145.0</td>\n",
-       "      <td>5000.0</td>\n",
-       "      <td>19</td>\n",
-       "      <td>24</td>\n",
-       "      <td>12964.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>30</th>\n",
-       "      <td>2</td>\n",
-       "      <td>137.0</td>\n",
-       "      <td>honda</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>two</td>\n",
-       "      <td>hatchback</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>86.6</td>\n",
-       "      <td>...</td>\n",
-       "      <td>92</td>\n",
-       "      <td>1bbl</td>\n",
-       "      <td>2.91</td>\n",
-       "      <td>3.41</td>\n",
-       "      <td>9.60</td>\n",
-       "      <td>58.0</td>\n",
-       "      <td>4800.0</td>\n",
-       "      <td>49</td>\n",
-       "      <td>54</td>\n",
-       "      <td>6479.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>...</th>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>175</th>\n",
-       "      <td>-1</td>\n",
-       "      <td>65.0</td>\n",
-       "      <td>toyota</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>hatchback</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>102.4</td>\n",
-       "      <td>...</td>\n",
-       "      <td>122</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.31</td>\n",
-       "      <td>3.54</td>\n",
-       "      <td>8.70</td>\n",
-       "      <td>92.0</td>\n",
-       "      <td>4200.0</td>\n",
-       "      <td>27</td>\n",
-       "      <td>32</td>\n",
-       "      <td>9988.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>176</th>\n",
-       "      <td>-1</td>\n",
-       "      <td>65.0</td>\n",
-       "      <td>toyota</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>102.4</td>\n",
-       "      <td>...</td>\n",
-       "      <td>122</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.31</td>\n",
-       "      <td>3.54</td>\n",
-       "      <td>8.70</td>\n",
-       "      <td>92.0</td>\n",
-       "      <td>4200.0</td>\n",
-       "      <td>27</td>\n",
-       "      <td>32</td>\n",
-       "      <td>10898.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>177</th>\n",
-       "      <td>-1</td>\n",
-       "      <td>65.0</td>\n",
-       "      <td>toyota</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>hatchback</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>102.4</td>\n",
-       "      <td>...</td>\n",
-       "      <td>122</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.31</td>\n",
-       "      <td>3.54</td>\n",
-       "      <td>8.70</td>\n",
-       "      <td>92.0</td>\n",
-       "      <td>4200.0</td>\n",
-       "      <td>27</td>\n",
-       "      <td>32</td>\n",
-       "      <td>11248.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>178</th>\n",
-       "      <td>3</td>\n",
-       "      <td>197.0</td>\n",
-       "      <td>toyota</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>two</td>\n",
-       "      <td>hatchback</td>\n",
-       "      <td>rwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>102.9</td>\n",
-       "      <td>...</td>\n",
-       "      <td>171</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.27</td>\n",
-       "      <td>3.35</td>\n",
-       "      <td>9.30</td>\n",
-       "      <td>161.0</td>\n",
-       "      <td>5200.0</td>\n",
-       "      <td>20</td>\n",
-       "      <td>24</td>\n",
-       "      <td>16558.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>179</th>\n",
-       "      <td>3</td>\n",
-       "      <td>197.0</td>\n",
-       "      <td>toyota</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>two</td>\n",
-       "      <td>hatchback</td>\n",
-       "      <td>rwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>102.9</td>\n",
-       "      <td>...</td>\n",
-       "      <td>171</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.27</td>\n",
-       "      <td>3.35</td>\n",
-       "      <td>9.30</td>\n",
-       "      <td>161.0</td>\n",
-       "      <td>5200.0</td>\n",
-       "      <td>19</td>\n",
-       "      <td>24</td>\n",
-       "      <td>15998.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>180</th>\n",
-       "      <td>-1</td>\n",
-       "      <td>90.0</td>\n",
-       "      <td>toyota</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>rwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>104.5</td>\n",
-       "      <td>...</td>\n",
-       "      <td>171</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.27</td>\n",
-       "      <td>3.35</td>\n",
-       "      <td>9.20</td>\n",
-       "      <td>156.0</td>\n",
-       "      <td>5200.0</td>\n",
-       "      <td>20</td>\n",
-       "      <td>24</td>\n",
-       "      <td>15690.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>181</th>\n",
-       "      <td>-1</td>\n",
-       "      <td>122.0</td>\n",
-       "      <td>toyota</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>wagon</td>\n",
-       "      <td>rwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>104.5</td>\n",
-       "      <td>...</td>\n",
-       "      <td>161</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.27</td>\n",
-       "      <td>3.35</td>\n",
-       "      <td>9.20</td>\n",
-       "      <td>156.0</td>\n",
-       "      <td>5200.0</td>\n",
-       "      <td>19</td>\n",
-       "      <td>24</td>\n",
-       "      <td>15750.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>182</th>\n",
-       "      <td>2</td>\n",
-       "      <td>122.0</td>\n",
-       "      <td>volkswagen</td>\n",
-       "      <td>diesel</td>\n",
-       "      <td>std</td>\n",
-       "      <td>two</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>97.3</td>\n",
-       "      <td>...</td>\n",
-       "      <td>97</td>\n",
-       "      <td>idi</td>\n",
-       "      <td>3.01</td>\n",
-       "      <td>3.40</td>\n",
-       "      <td>23.00</td>\n",
-       "      <td>52.0</td>\n",
-       "      <td>4800.0</td>\n",
-       "      <td>37</td>\n",
-       "      <td>46</td>\n",
-       "      <td>7775.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>183</th>\n",
-       "      <td>2</td>\n",
-       "      <td>122.0</td>\n",
-       "      <td>volkswagen</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>two</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>97.3</td>\n",
-       "      <td>...</td>\n",
-       "      <td>109</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.19</td>\n",
-       "      <td>3.40</td>\n",
-       "      <td>9.00</td>\n",
-       "      <td>85.0</td>\n",
-       "      <td>5250.0</td>\n",
-       "      <td>27</td>\n",
-       "      <td>34</td>\n",
-       "      <td>7975.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>184</th>\n",
-       "      <td>2</td>\n",
-       "      <td>94.0</td>\n",
-       "      <td>volkswagen</td>\n",
-       "      <td>diesel</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>97.3</td>\n",
-       "      <td>...</td>\n",
-       "      <td>97</td>\n",
-       "      <td>idi</td>\n",
-       "      <td>3.01</td>\n",
-       "      <td>3.40</td>\n",
-       "      <td>23.00</td>\n",
-       "      <td>52.0</td>\n",
-       "      <td>4800.0</td>\n",
-       "      <td>37</td>\n",
-       "      <td>46</td>\n",
-       "      <td>7995.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>185</th>\n",
-       "      <td>2</td>\n",
-       "      <td>94.0</td>\n",
-       "      <td>volkswagen</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>97.3</td>\n",
-       "      <td>...</td>\n",
-       "      <td>109</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.19</td>\n",
-       "      <td>3.40</td>\n",
-       "      <td>9.00</td>\n",
-       "      <td>85.0</td>\n",
-       "      <td>5250.0</td>\n",
-       "      <td>27</td>\n",
-       "      <td>34</td>\n",
-       "      <td>8195.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>186</th>\n",
-       "      <td>2</td>\n",
-       "      <td>94.0</td>\n",
-       "      <td>volkswagen</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>97.3</td>\n",
-       "      <td>...</td>\n",
-       "      <td>109</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.19</td>\n",
-       "      <td>3.40</td>\n",
-       "      <td>9.00</td>\n",
-       "      <td>85.0</td>\n",
-       "      <td>5250.0</td>\n",
-       "      <td>27</td>\n",
-       "      <td>34</td>\n",
-       "      <td>8495.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>187</th>\n",
-       "      <td>2</td>\n",
-       "      <td>94.0</td>\n",
-       "      <td>volkswagen</td>\n",
-       "      <td>diesel</td>\n",
-       "      <td>turbo</td>\n",
-       "      <td>four</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>97.3</td>\n",
-       "      <td>...</td>\n",
-       "      <td>97</td>\n",
-       "      <td>idi</td>\n",
-       "      <td>3.01</td>\n",
-       "      <td>3.40</td>\n",
-       "      <td>23.00</td>\n",
-       "      <td>68.0</td>\n",
-       "      <td>4500.0</td>\n",
-       "      <td>37</td>\n",
-       "      <td>42</td>\n",
-       "      <td>9495.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>188</th>\n",
-       "      <td>2</td>\n",
-       "      <td>94.0</td>\n",
-       "      <td>volkswagen</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>97.3</td>\n",
-       "      <td>...</td>\n",
-       "      <td>109</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.19</td>\n",
-       "      <td>3.40</td>\n",
-       "      <td>10.00</td>\n",
-       "      <td>100.0</td>\n",
-       "      <td>5500.0</td>\n",
-       "      <td>26</td>\n",
-       "      <td>32</td>\n",
-       "      <td>9995.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>189</th>\n",
-       "      <td>3</td>\n",
-       "      <td>122.0</td>\n",
-       "      <td>volkswagen</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>two</td>\n",
-       "      <td>convertible</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>94.5</td>\n",
-       "      <td>...</td>\n",
-       "      <td>109</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.19</td>\n",
-       "      <td>3.40</td>\n",
-       "      <td>8.50</td>\n",
-       "      <td>90.0</td>\n",
-       "      <td>5500.0</td>\n",
-       "      <td>24</td>\n",
-       "      <td>29</td>\n",
-       "      <td>11595.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>190</th>\n",
-       "      <td>3</td>\n",
-       "      <td>256.0</td>\n",
-       "      <td>volkswagen</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>two</td>\n",
-       "      <td>hatchback</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>94.5</td>\n",
-       "      <td>...</td>\n",
-       "      <td>109</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.19</td>\n",
-       "      <td>3.40</td>\n",
-       "      <td>8.50</td>\n",
-       "      <td>90.0</td>\n",
-       "      <td>5500.0</td>\n",
-       "      <td>24</td>\n",
-       "      <td>29</td>\n",
-       "      <td>9980.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>191</th>\n",
-       "      <td>0</td>\n",
-       "      <td>122.0</td>\n",
-       "      <td>volkswagen</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>100.4</td>\n",
-       "      <td>...</td>\n",
-       "      <td>136</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.19</td>\n",
-       "      <td>3.40</td>\n",
-       "      <td>8.50</td>\n",
-       "      <td>110.0</td>\n",
-       "      <td>5500.0</td>\n",
-       "      <td>19</td>\n",
-       "      <td>24</td>\n",
-       "      <td>13295.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>192</th>\n",
-       "      <td>0</td>\n",
-       "      <td>122.0</td>\n",
-       "      <td>volkswagen</td>\n",
-       "      <td>diesel</td>\n",
-       "      <td>turbo</td>\n",
-       "      <td>four</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>100.4</td>\n",
-       "      <td>...</td>\n",
-       "      <td>97</td>\n",
-       "      <td>idi</td>\n",
-       "      <td>3.01</td>\n",
-       "      <td>3.40</td>\n",
-       "      <td>23.00</td>\n",
-       "      <td>68.0</td>\n",
-       "      <td>4500.0</td>\n",
-       "      <td>33</td>\n",
-       "      <td>38</td>\n",
-       "      <td>13845.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>193</th>\n",
-       "      <td>0</td>\n",
-       "      <td>122.0</td>\n",
-       "      <td>volkswagen</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>wagon</td>\n",
-       "      <td>fwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>100.4</td>\n",
-       "      <td>...</td>\n",
-       "      <td>109</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.19</td>\n",
-       "      <td>3.40</td>\n",
-       "      <td>9.00</td>\n",
-       "      <td>88.0</td>\n",
-       "      <td>5500.0</td>\n",
-       "      <td>25</td>\n",
-       "      <td>31</td>\n",
-       "      <td>12290.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>194</th>\n",
-       "      <td>-2</td>\n",
-       "      <td>103.0</td>\n",
-       "      <td>volvo</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>rwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>104.3</td>\n",
-       "      <td>...</td>\n",
-       "      <td>141</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.78</td>\n",
-       "      <td>3.15</td>\n",
-       "      <td>9.50</td>\n",
-       "      <td>114.0</td>\n",
-       "      <td>5400.0</td>\n",
-       "      <td>23</td>\n",
-       "      <td>28</td>\n",
-       "      <td>12940.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>195</th>\n",
-       "      <td>-1</td>\n",
-       "      <td>74.0</td>\n",
-       "      <td>volvo</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>wagon</td>\n",
-       "      <td>rwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>104.3</td>\n",
-       "      <td>...</td>\n",
-       "      <td>141</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.78</td>\n",
-       "      <td>3.15</td>\n",
-       "      <td>9.50</td>\n",
-       "      <td>114.0</td>\n",
-       "      <td>5400.0</td>\n",
-       "      <td>23</td>\n",
-       "      <td>28</td>\n",
-       "      <td>13415.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>196</th>\n",
-       "      <td>-2</td>\n",
-       "      <td>103.0</td>\n",
-       "      <td>volvo</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>rwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>104.3</td>\n",
-       "      <td>...</td>\n",
-       "      <td>141</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.78</td>\n",
-       "      <td>3.15</td>\n",
-       "      <td>9.50</td>\n",
-       "      <td>114.0</td>\n",
-       "      <td>5400.0</td>\n",
-       "      <td>24</td>\n",
-       "      <td>28</td>\n",
-       "      <td>15985.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>197</th>\n",
-       "      <td>-1</td>\n",
-       "      <td>74.0</td>\n",
-       "      <td>volvo</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>wagon</td>\n",
-       "      <td>rwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>104.3</td>\n",
-       "      <td>...</td>\n",
-       "      <td>141</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.78</td>\n",
-       "      <td>3.15</td>\n",
-       "      <td>9.50</td>\n",
-       "      <td>114.0</td>\n",
-       "      <td>5400.0</td>\n",
-       "      <td>24</td>\n",
-       "      <td>28</td>\n",
-       "      <td>16515.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>198</th>\n",
-       "      <td>-2</td>\n",
-       "      <td>103.0</td>\n",
-       "      <td>volvo</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>turbo</td>\n",
-       "      <td>four</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>rwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>104.3</td>\n",
-       "      <td>...</td>\n",
-       "      <td>130</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.62</td>\n",
-       "      <td>3.15</td>\n",
-       "      <td>7.50</td>\n",
-       "      <td>162.0</td>\n",
-       "      <td>5100.0</td>\n",
-       "      <td>17</td>\n",
-       "      <td>22</td>\n",
-       "      <td>18420.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>199</th>\n",
-       "      <td>-1</td>\n",
-       "      <td>74.0</td>\n",
-       "      <td>volvo</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>turbo</td>\n",
-       "      <td>four</td>\n",
-       "      <td>wagon</td>\n",
-       "      <td>rwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>104.3</td>\n",
-       "      <td>...</td>\n",
-       "      <td>130</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.62</td>\n",
-       "      <td>3.15</td>\n",
-       "      <td>7.50</td>\n",
-       "      <td>162.0</td>\n",
-       "      <td>5100.0</td>\n",
-       "      <td>17</td>\n",
-       "      <td>22</td>\n",
-       "      <td>18950.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>200</th>\n",
-       "      <td>-1</td>\n",
-       "      <td>95.0</td>\n",
-       "      <td>volvo</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>rwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>109.1</td>\n",
-       "      <td>...</td>\n",
-       "      <td>141</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.78</td>\n",
-       "      <td>3.15</td>\n",
-       "      <td>9.50</td>\n",
-       "      <td>114.0</td>\n",
-       "      <td>5400.0</td>\n",
-       "      <td>23</td>\n",
-       "      <td>28</td>\n",
-       "      <td>16845.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>201</th>\n",
-       "      <td>-1</td>\n",
-       "      <td>95.0</td>\n",
-       "      <td>volvo</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>turbo</td>\n",
-       "      <td>four</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>rwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>109.1</td>\n",
-       "      <td>...</td>\n",
-       "      <td>141</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.78</td>\n",
-       "      <td>3.15</td>\n",
-       "      <td>8.70</td>\n",
-       "      <td>160.0</td>\n",
-       "      <td>5300.0</td>\n",
-       "      <td>19</td>\n",
-       "      <td>25</td>\n",
-       "      <td>19045.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>202</th>\n",
-       "      <td>-1</td>\n",
-       "      <td>95.0</td>\n",
-       "      <td>volvo</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>std</td>\n",
-       "      <td>four</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>rwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>109.1</td>\n",
-       "      <td>...</td>\n",
-       "      <td>173</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.58</td>\n",
-       "      <td>2.87</td>\n",
-       "      <td>8.80</td>\n",
-       "      <td>134.0</td>\n",
-       "      <td>5500.0</td>\n",
-       "      <td>18</td>\n",
-       "      <td>23</td>\n",
-       "      <td>21485.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>203</th>\n",
-       "      <td>-1</td>\n",
-       "      <td>95.0</td>\n",
-       "      <td>volvo</td>\n",
-       "      <td>diesel</td>\n",
-       "      <td>turbo</td>\n",
-       "      <td>four</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>rwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>109.1</td>\n",
-       "      <td>...</td>\n",
-       "      <td>145</td>\n",
-       "      <td>idi</td>\n",
-       "      <td>3.01</td>\n",
-       "      <td>3.40</td>\n",
-       "      <td>23.00</td>\n",
-       "      <td>106.0</td>\n",
-       "      <td>4800.0</td>\n",
-       "      <td>26</td>\n",
-       "      <td>27</td>\n",
-       "      <td>22470.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>204</th>\n",
-       "      <td>-1</td>\n",
-       "      <td>95.0</td>\n",
-       "      <td>volvo</td>\n",
-       "      <td>gas</td>\n",
-       "      <td>turbo</td>\n",
-       "      <td>four</td>\n",
-       "      <td>sedan</td>\n",
-       "      <td>rwd</td>\n",
-       "      <td>front</td>\n",
-       "      <td>109999.1</td>\n",
-       "      <td>...</td>\n",
-       "      <td>141</td>\n",
-       "      <td>mpfi</td>\n",
-       "      <td>3.78</td>\n",
-       "      <td>3.15</td>\n",
-       "      <td>9.50</td>\n",
-       "      <td>114.0</td>\n",
-       "      <td>5400.0</td>\n",
-       "      <td>19</td>\n",
-       "      <td>25</td>\n",
-       "      <td>22625.000000</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "<p>203 rows × 26 columns</p>\n",
-       "</div>"
-      ],
       "text/plain": [
-       "     symboling  normalized-losses         make fuel-type aspiration  \\\n",
-       "0            3              122.0  alfa-romero       gas        std   \n",
-       "1            3              122.0  alfa-romero       gas        std   \n",
-       "2            1              122.0  alfa-romero       gas        std   \n",
-       "3            2              164.0         audi       gas        std   \n",
-       "4            2              164.0         audi       gas        std   \n",
-       "5            2              122.0         audi       gas        std   \n",
-       "6            1              158.0         audi       gas        std   \n",
-       "7            1              122.0         audi       gas        std   \n",
-       "8            1              158.0         audi       gas      turbo   \n",
-       "9            0              122.0         audi       gas      turbo   \n",
-       "10           2              192.0          bmw       gas        std   \n",
-       "11           0              192.0          bmw       gas        std   \n",
-       "12           0              188.0          bmw       gas        std   \n",
-       "13           0              188.0          bmw       gas        std   \n",
-       "14           1              122.0          bmw       gas        std   \n",
-       "15           0              122.0          bmw       gas        std   \n",
-       "16           0              122.0          bmw       gas        std   \n",
-       "17           0              122.0          bmw       gas        std   \n",
-       "18           2              121.0    chevrolet       gas        std   \n",
-       "19           1               98.0    chevrolet       gas        std   \n",
-       "20           0               81.0    chevrolet       gas        std   \n",
-       "21           1              118.0        dodge       gas        std   \n",
-       "22           1              118.0        dodge       gas        std   \n",
-       "23           1              118.0        dodge       gas      turbo   \n",
-       "24           1              148.0        dodge       gas        std   \n",
-       "25           1              148.0        dodge       gas        std   \n",
-       "26           1              148.0        dodge       gas        std   \n",
-       "28          -1              110.0        dodge       gas        std   \n",
-       "29           3              145.0        dodge       gas      turbo   \n",
-       "30           2              137.0        honda       gas        std   \n",
-       "..         ...                ...          ...       ...        ...   \n",
-       "175         -1               65.0       toyota       gas        std   \n",
-       "176         -1               65.0       toyota       gas        std   \n",
-       "177         -1               65.0       toyota       gas        std   \n",
-       "178          3              197.0       toyota       gas        std   \n",
-       "179          3              197.0       toyota       gas        std   \n",
-       "180         -1               90.0       toyota       gas        std   \n",
-       "181         -1              122.0       toyota       gas        std   \n",
-       "182          2              122.0   volkswagen    diesel        std   \n",
-       "183          2              122.0   volkswagen       gas        std   \n",
-       "184          2               94.0   volkswagen    diesel        std   \n",
-       "185          2               94.0   volkswagen       gas        std   \n",
-       "186          2               94.0   volkswagen       gas        std   \n",
-       "187          2               94.0   volkswagen    diesel      turbo   \n",
-       "188          2               94.0   volkswagen       gas        std   \n",
-       "189          3              122.0   volkswagen       gas        std   \n",
-       "190          3              256.0   volkswagen       gas        std   \n",
-       "191          0              122.0   volkswagen       gas        std   \n",
-       "192          0              122.0   volkswagen    diesel      turbo   \n",
-       "193          0              122.0   volkswagen       gas        std   \n",
-       "194         -2              103.0        volvo       gas        std   \n",
-       "195         -1               74.0        volvo       gas        std   \n",
-       "196         -2              103.0        volvo       gas        std   \n",
-       "197         -1               74.0        volvo       gas        std   \n",
-       "198         -2              103.0        volvo       gas      turbo   \n",
-       "199         -1               74.0        volvo       gas      turbo   \n",
-       "200         -1               95.0        volvo       gas        std   \n",
-       "201         -1               95.0        volvo       gas      turbo   \n",
-       "202         -1               95.0        volvo       gas        std   \n",
-       "203         -1               95.0        volvo    diesel      turbo   \n",
-       "204         -1               95.0        volvo       gas      turbo   \n",
-       "\n",
-       "    num-of-doors   body-style drive-wheels engine-location  wheel-base  \\\n",
-       "0            two  convertible          rwd           front        88.6   \n",
-       "1            two  convertible          rwd           front        88.6   \n",
-       "2            two    hatchback          rwd           front        94.5   \n",
-       "3           four        sedan          fwd           front        99.8   \n",
-       "4           four        sedan          4wd           front        99.4   \n",
-       "5            two        sedan          fwd           front        99.8   \n",
-       "6           four        sedan          fwd           front       105.8   \n",
-       "7           four        wagon          fwd           front       105.8   \n",
-       "8           four        sedan          fwd           front       105.8   \n",
-       "9            two    hatchback          4wd           front        99.5   \n",
-       "10           two        sedan          rwd           front       101.2   \n",
-       "11          four        sedan          rwd           front       101.2   \n",
-       "12           two        sedan          rwd           front       101.2   \n",
-       "13          four        sedan          rwd           front       101.2   \n",
-       "14          four        sedan          rwd           front       103.5   \n",
-       "15          four        sedan          rwd           front       103.5   \n",
-       "16           two        sedan          rwd           front       103.5   \n",
-       "17          four        sedan          rwd           front       110.0   \n",
-       "18           two    hatchback          fwd           front        88.4   \n",
-       "19           two    hatchback          fwd           front        94.5   \n",
-       "20          four        sedan          fwd           front        94.5   \n",
-       "21           two    hatchback          fwd           front        93.7   \n",
-       "22           two    hatchback          fwd           front        93.7   \n",
-       "23           two    hatchback          fwd           front        93.7   \n",
-       "24          four    hatchback          fwd           front        93.7   \n",
-       "25          four        sedan          fwd           front        93.7   \n",
-       "26          four        sedan          fwd           front        93.7   \n",
-       "28          four        wagon          fwd           front       103.3   \n",
-       "29           two    hatchback          fwd           front        95.9   \n",
-       "30           two    hatchback          fwd           front        86.6   \n",
-       "..           ...          ...          ...             ...         ...   \n",
-       "175         four    hatchback          fwd           front       102.4   \n",
-       "176         four        sedan          fwd           front       102.4   \n",
-       "177         four    hatchback          fwd           front       102.4   \n",
-       "178          two    hatchback          rwd           front       102.9   \n",
-       "179          two    hatchback          rwd           front       102.9   \n",
-       "180         four        sedan          rwd           front       104.5   \n",
-       "181         four        wagon          rwd           front       104.5   \n",
-       "182          two        sedan          fwd           front        97.3   \n",
-       "183          two        sedan          fwd           front        97.3   \n",
-       "184         four        sedan          fwd           front        97.3   \n",
-       "185         four        sedan          fwd           front        97.3   \n",
-       "186         four        sedan          fwd           front        97.3   \n",
-       "187         four        sedan          fwd           front        97.3   \n",
-       "188         four        sedan          fwd           front        97.3   \n",
-       "189          two  convertible          fwd           front        94.5   \n",
-       "190          two    hatchback          fwd           front        94.5   \n",
-       "191         four        sedan          fwd           front       100.4   \n",
-       "192         four        sedan          fwd           front       100.4   \n",
-       "193         four        wagon          fwd           front       100.4   \n",
-       "194         four        sedan          rwd           front       104.3   \n",
-       "195         four        wagon          rwd           front       104.3   \n",
-       "196         four        sedan          rwd           front       104.3   \n",
-       "197         four        wagon          rwd           front       104.3   \n",
-       "198         four        sedan          rwd           front       104.3   \n",
-       "199         four        wagon          rwd           front       104.3   \n",
-       "200         four        sedan          rwd           front       109.1   \n",
-       "201         four        sedan          rwd           front       109.1   \n",
-       "202         four        sedan          rwd           front       109.1   \n",
-       "203         four        sedan          rwd           front       109.1   \n",
-       "204         four        sedan          rwd           front    109999.1   \n",
-       "\n",
-       "         ...       engine-size  fuel-system  bore  stroke compression-ratio  \\\n",
-       "0        ...               130         mpfi  3.47    2.68              9.00   \n",
-       "1        ...               130         mpfi  3.47    2.68              9.00   \n",
-       "2        ...               152         mpfi  2.68    3.47              9.00   \n",
-       "3        ...               109         mpfi  3.19    3.40             10.00   \n",
-       "4        ...               136         mpfi  3.19    3.40              8.00   \n",
-       "5        ...               136         mpfi  3.19    3.40              8.50   \n",
-       "6        ...               136         mpfi  3.19    3.40              8.50   \n",
-       "7        ...               136         mpfi  3.19    3.40              8.50   \n",
-       "8        ...               131         mpfi  3.13    3.40              8.30   \n",
-       "9        ...               131         mpfi  3.13    3.40              7.00   \n",
-       "10       ...               108         mpfi  3.50    2.80              8.80   \n",
-       "11       ...               108         mpfi  3.50    2.80              8.80   \n",
-       "12       ...               164         mpfi  3.31    3.19              9.00   \n",
-       "13       ...               164         mpfi  3.31    3.19              9.00   \n",
-       "14       ...               164         mpfi  3.31    3.19              9.00   \n",
-       "15       ...               209         mpfi  3.62    3.39              8.00   \n",
-       "16       ...               209         mpfi  3.62    3.39              8.00   \n",
-       "17       ...               209         mpfi  3.62    3.39              8.00   \n",
-       "18       ...                61         2bbl  2.91    3.03              9.50   \n",
-       "19       ...                90         2bbl  3.03    3.11              9.60   \n",
-       "20       ...                90         2bbl  3.03    3.11              9.60   \n",
-       "21       ...                90         2bbl  2.97    3.23              9.41   \n",
-       "22       ...                90         2bbl  2.97    3.23              9.40   \n",
-       "23       ...                98         mpfi  3.03    3.39              7.60   \n",
-       "24       ...                90         2bbl  2.97    3.23              9.40   \n",
-       "25       ...                90         2bbl  2.97    3.23              9.40   \n",
-       "26       ...                90         2bbl  2.97    3.23              9.40   \n",
-       "28       ...               122         2bbl  3.34    3.46              8.50   \n",
-       "29       ...               156          mfi  3.60    3.90              7.00   \n",
-       "30       ...                92         1bbl  2.91    3.41              9.60   \n",
-       "..       ...               ...          ...   ...     ...               ...   \n",
-       "175      ...               122         mpfi  3.31    3.54              8.70   \n",
-       "176      ...               122         mpfi  3.31    3.54              8.70   \n",
-       "177      ...               122         mpfi  3.31    3.54              8.70   \n",
-       "178      ...               171         mpfi  3.27    3.35              9.30   \n",
-       "179      ...               171         mpfi  3.27    3.35              9.30   \n",
-       "180      ...               171         mpfi  3.27    3.35              9.20   \n",
-       "181      ...               161         mpfi  3.27    3.35              9.20   \n",
-       "182      ...                97          idi  3.01    3.40             23.00   \n",
-       "183      ...               109         mpfi  3.19    3.40              9.00   \n",
-       "184      ...                97          idi  3.01    3.40             23.00   \n",
-       "185      ...               109         mpfi  3.19    3.40              9.00   \n",
-       "186      ...               109         mpfi  3.19    3.40              9.00   \n",
-       "187      ...                97          idi  3.01    3.40             23.00   \n",
-       "188      ...               109         mpfi  3.19    3.40             10.00   \n",
-       "189      ...               109         mpfi  3.19    3.40              8.50   \n",
-       "190      ...               109         mpfi  3.19    3.40              8.50   \n",
-       "191      ...               136         mpfi  3.19    3.40              8.50   \n",
-       "192      ...                97          idi  3.01    3.40             23.00   \n",
-       "193      ...               109         mpfi  3.19    3.40              9.00   \n",
-       "194      ...               141         mpfi  3.78    3.15              9.50   \n",
-       "195      ...               141         mpfi  3.78    3.15              9.50   \n",
-       "196      ...               141         mpfi  3.78    3.15              9.50   \n",
-       "197      ...               141         mpfi  3.78    3.15              9.50   \n",
-       "198      ...               130         mpfi  3.62    3.15              7.50   \n",
-       "199      ...               130         mpfi  3.62    3.15              7.50   \n",
-       "200      ...               141         mpfi  3.78    3.15              9.50   \n",
-       "201      ...               141         mpfi  3.78    3.15              8.70   \n",
-       "202      ...               173         mpfi  3.58    2.87              8.80   \n",
-       "203      ...               145          idi  3.01    3.40             23.00   \n",
-       "204      ...               141         mpfi  3.78    3.15              9.50   \n",
-       "\n",
-       "    horsepower  peak-rpm city-mpg  highway-mpg         price  \n",
-       "0        111.0    5000.0       21           27  13495.000000  \n",
-       "1        111.0    5000.0       21           27  16500.000000  \n",
-       "2        154.0    5000.0       19           26  16500.000000  \n",
-       "3        102.0    5500.0       24           30  13950.000000  \n",
-       "4        115.0    5500.0       18           22  17450.000000  \n",
-       "5        110.0    5500.0       19           25  15250.000000  \n",
-       "6        110.0    5500.0       19           25  17710.000000  \n",
-       "7        110.0    5500.0       19           25  18920.000000  \n",
-       "8        140.0    5500.0       17           20  23875.000000  \n",
-       "9        160.0    5500.0       16           22  13207.129353  \n",
-       "10       101.0    5800.0       23           29  16430.000000  \n",
-       "11       101.0    5800.0       23           29  16925.000000  \n",
-       "12       121.0    4250.0       21           28  20970.000000  \n",
-       "13       121.0    4250.0       21           28  21105.000000  \n",
-       "14       121.0    4250.0       20           25  24565.000000  \n",
-       "15       182.0    5400.0       16           22  30760.000000  \n",
-       "16       182.0    5400.0       16           22  41315.000000  \n",
-       "17       182.0    5400.0       15           20  36880.000000  \n",
-       "18        48.0    5100.0       47           53   5151.000000  \n",
-       "19        70.0    5400.0       38           43   6295.000000  \n",
-       "20        70.0    5400.0       38           43   6575.000000  \n",
-       "21        68.0    5500.0       37           41   5572.000000  \n",
-       "22        68.0    5500.0       31           38   6377.000000  \n",
-       "23       102.0    5500.0       24           30   7957.000000  \n",
-       "24        68.0    5500.0       31           38   6229.000000  \n",
-       "25        68.0    5500.0       31           38   6692.000000  \n",
-       "26        68.0    5500.0       31           38   7609.000000  \n",
-       "28        88.0    5000.0       24           30   8921.000000  \n",
-       "29       145.0    5000.0       19           24  12964.000000  \n",
-       "30        58.0    4800.0       49           54   6479.000000  \n",
-       "..         ...       ...      ...          ...           ...  \n",
-       "175       92.0    4200.0       27           32   9988.000000  \n",
-       "176       92.0    4200.0       27           32  10898.000000  \n",
-       "177       92.0    4200.0       27           32  11248.000000  \n",
-       "178      161.0    5200.0       20           24  16558.000000  \n",
-       "179      161.0    5200.0       19           24  15998.000000  \n",
-       "180      156.0    5200.0       20           24  15690.000000  \n",
-       "181      156.0    5200.0       19           24  15750.000000  \n",
-       "182       52.0    4800.0       37           46   7775.000000  \n",
-       "183       85.0    5250.0       27           34   7975.000000  \n",
-       "184       52.0    4800.0       37           46   7995.000000  \n",
-       "185       85.0    5250.0       27           34   8195.000000  \n",
-       "186       85.0    5250.0       27           34   8495.000000  \n",
-       "187       68.0    4500.0       37           42   9495.000000  \n",
-       "188      100.0    5500.0       26           32   9995.000000  \n",
-       "189       90.0    5500.0       24           29  11595.000000  \n",
-       "190       90.0    5500.0       24           29   9980.000000  \n",
-       "191      110.0    5500.0       19           24  13295.000000  \n",
-       "192       68.0    4500.0       33           38  13845.000000  \n",
-       "193       88.0    5500.0       25           31  12290.000000  \n",
-       "194      114.0    5400.0       23           28  12940.000000  \n",
-       "195      114.0    5400.0       23           28  13415.000000  \n",
-       "196      114.0    5400.0       24           28  15985.000000  \n",
-       "197      114.0    5400.0       24           28  16515.000000  \n",
-       "198      162.0    5100.0       17           22  18420.000000  \n",
-       "199      162.0    5100.0       17           22  18950.000000  \n",
-       "200      114.0    5400.0       23           28  16845.000000  \n",
-       "201      160.0    5300.0       19           25  19045.000000  \n",
-       "202      134.0    5500.0       18           23  21485.000000  \n",
-       "203      106.0    4800.0       26           27  22470.000000  \n",
-       "204      114.0    5400.0       19           25  22625.000000  \n",
-       "\n",
-       "[203 rows x 26 columns]"
+       "symboling            205\n",
+       "normalized-losses    205\n",
+       "make                 205\n",
+       "fuel-type            205\n",
+       "aspiration           205\n",
+       "num-of-doors         205\n",
+       "body-style           205\n",
+       "drive-wheels         205\n",
+       "engine-location      205\n",
+       "wheel-base           205\n",
+       "length               205\n",
+       "width                205\n",
+       "height               205\n",
+       "curb-weight          205\n",
+       "engine-type          205\n",
+       "num-of-cylinders     205\n",
+       "engine-size          205\n",
+       "fuel-system          205\n",
+       "bore                 205\n",
+       "stroke               205\n",
+       "compression-ratio    205\n",
+       "horsepower           205\n",
+       "peak-rpm             205\n",
+       "city-mpg             205\n",
+       "highway-mpg          205\n",
+       "price                205\n",
+       "dtype: int64"
       ]
      },
-     "execution_count": 37,
+     "execution_count": 35,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -5377,13 +3639,15 @@
     "#2 fill with mean then drop NaN\n",
     "auto_mean = pd.read_csv('automobile.csv', na_values=[\"?\"])\n",
     "auto_mean = auto_mean.fillna(auto_mean.mean())\n",
-    "auto_mean = auto_mean.dropna()\n",
-    "auto_mean"
+    "mode_num_door = auto_mean['num-of-doors'].mode()\n",
+    "auto_mean = auto_mean.fillna(value={'num-of-doors': mode_num_door[0]})\n",
+    "#auto_mean = auto_mean.dropna()\n",
+    "auto_mean.count()"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 33,
+   "execution_count": 6,
    "metadata": {
     "scrolled": true
    },
@@ -5420,7 +3684,7 @@
        "dtype: int64"
       ]
      },
-     "execution_count": 33,
+     "execution_count": 6,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -5434,7 +3698,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 30,
+   "execution_count": 7,
    "metadata": {
     "scrolled": true
    },
@@ -7209,7 +5473,7 @@
        "[205 rows x 26 columns]"
       ]
      },
-     "execution_count": 30,
+     "execution_count": 7,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -7222,14 +5486,14 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 46,
+   "execution_count": 8,
    "metadata": {},
    "outputs": [
     {
      "data": {
       "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAADuCAYAAADxyZqNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAGfpJREFUeJzt3X+QVeWd5/H3h25UsjMO0HYoFsjgDOwYohuiPUiViZtVwMaJ4mxFV2d36M1a27MGlVTNzqipqTLjj6rkj4kjVsJMJzI2s5lBzGRGYoHYqFkzW1FpRgIipujVJDaw0DZozOCSAN/94zztXJrbP+g+p09f+LyqbvV9vuc55z4nFf343HPueRQRmJmZ5WFC2QMwM7Mzh0PFzMxy41AxM7PcOFTMzCw3DhUzM8uNQ8XMzHLjUDEzs9w4VMzMLDcOFTMzy0192QMYaxdccEHMnj277GGYmdWUbdu2vR0RjUP1O+tCZfbs2XR2dpY9DDOzmiLpJ8Pp56+/zMwsNw4VMzPLjUPFzMxy41AxM7PcOFTMxoHe3l7uvPNOent7yx6K2ag4VMzGgfb2dnbu3MnatWvLHorZqDhUzErW29vL008/TUTw9NNPe7ZiNa3wUJFUJ+kVSU+l9mOS3pS0Pb3mp7okrZLUJWmHpEsrjtEiaU96tVTUL5O0M+2zSpKKPh+zvLW3t3PixAkAjh8/7tmK1bSxmKmsBHb3q/1RRMxPr+2pthSYm16twGoASVOBe4HLgQXAvZKmpH1Wp759+zUXeSJmRdiyZQvHjh0D4NixY3R0dJQ8IrORKzRUJM0Efgf45jC6LwPWRuZFYLKk6cA1QEdEHIqIw0AH0Jy2nR8RP4iIANYCNxRzJmbFWbRoEfX12cMt6uvrWbx4cckjMhu5omcqfw78MXCiX/3B9BXXQ5LOTbUZwFsVfbpTbbB6d5X6KSS1SuqU1NnT0zPikzErQktLCxMmZP8o1tXVsXz58pJHZDZyhYWKpM8AByNiW79N9wAXAb8NTAXu6tulymFiBPVTixFtEdEUEU2NjUM+D81sTDU0NNDc3IwkmpubaWhoKHtIZiNW5EzlCuB6ST8G1gFXSfqfEbE/fcV1FPgrsuskkM00ZlXsPxPYN0R9ZpW6Wc1paWnhkksu8SzFal5hoRIR90TEzIiYDdwMPBcR/zldCyHdqXUD8GraZQOwPN0FthB4NyL2A5uBJZKmpAv0S4DNadt7khamYy0HnizqfMyK1NDQwKpVqzxLsZpXxqPvvyWpkezrq+3Af0/1jcC1QBdwBPgcQEQcknQ/sDX1uy8iDqX3twGPAZOATellZmYlUXbj1NmjqakpvJ6KmdnpkbQtIpqG6udf1JuZWW4cKmZmlhuHipmZ5cahYmZmuXGomJlZbhwqZmaWG4eKmZnlxqFiZma5caiYjQNeo97OFA4Vs3HAa9TbmcKhYlay3t5eNm3aRESwadMmz1aspjlUzErW3t7+wXLCv/zlLz1bsZrmUDErWUdHB30Pdo0InnnmmZJHZDZyDhWzkk2bNm3QtlktcaiYlezAgQODts1qSeGhIqlO0iuSnkrtCyW9JGmPpMclnZPq56Z2V9o+u+IY96T6jyRdU1FvTrUuSXcXfS5mRVi8eDHZ4qUgiSVLlpQ8IrORG4uZykpgd0X7K8BDETEXOAzcmuq3AocjYg7wUOqHpHlkyxF/DGgGvp6Cqg74GrAUmAfckvqa1ZSWlhYmTpwIwMSJE71OvdW0QkNF0kzgd4BvpraAq4Bvpy7tZOvUAyxLbdL2q1P/ZcC6iDgaEW+SLTe8IL26IuKNiPgFsC71NaspDQ0NNDc3I4mlS5d6nXqraUXPVP4c+GPgRGo3AO9ExLHU7gZmpPczgLcA0vZ3U/8P6v32Gah+Ckmtkjoldfb09Iz2nMxy19LSwiWXXOJZitW8wkJF0meAgxGxrbJcpWsMse1066cWI9oioikimhobGwcZtVk5GhoaWLVqlWcpVvPqCzz2FcD1kq4FzgPOJ5u5TJZUn2YjM4F9qX83MAvollQP/BpwqKLep3KfgepmZlaCwmYqEXFPRMyMiNlkF9qfi4j/BDwPfDZ1awGeTO83pDZp+3OR/SJsA3BzujvsQmAu8DKwFZib7iY7J33GhqLOx8zMhlbkTGUgdwHrJD0AvAI8muqPAn8tqYtshnIzQETskrQeeA04BqyIiOMAkm4HNgN1wJqI2DWmZ2JmZidR3+MhzhZNTU3R2dlZ9jDMzGqKpG0R0TRUP/+i3szMcuNQMTOz3DhUzMwsNw4VMzPLjUPFzMxy41AxGwd6e3u58847vZSw1TyHitk40NbWxo4dO2hrayt7KGaj4lAxK1lvby8dHR1AtrSwZytWyxwqZiVra2vjxInsQd4nTpzwbMVqmkPFrGTPPvvsoG2zWuJQMStZ/0clnW2PTrIzi0PFrGRXX331Se1FixaVNBKz0XOomJXspptuOql94403ljQSs9FzqJiVbMOGk5cB+u53v1vSSMxGz6FiVrK+24n7PPPMMyWNxGz0HCpmJZs2bdqgbbNaUlioSDpP0suSfihpl6Q/TfXHJL0paXt6zU91SVolqUvSDkmXVhyrRdKe9GqpqF8maWfaZ5UkFXU+ZkU5cODAoG2zWlLkTOUocFVEfByYDzRLWpi2/VFEzE+v7am2lGz9+blAK7AaQNJU4F7gcmABcK+kKWmf1alv337NBZ6PWSE+9alPndS+8sorSxqJ2egVFiqR+XlqTkyvwW7AXwasTfu9CEyWNB24BuiIiEMRcRjoIAuo6cD5EfGDyG7sXwvcUNT5mBXFE2w7kxR6TUVSnaTtwEGyYHgpbXowfcX1kKRzU20G8FbF7t2pNli9u0q92jhaJXVK6uzp6Rn1eZnl6fvf//6gbbNaUmioRMTxiJgPzAQWSLoYuAe4CPhtYCpwV+pe7T/XYgT1auNoi4imiGhqbGw8zbMwK1b/HzsuXry4pJGYjd6Y3P0VEe8A3wOaI2J/+orrKPBXZNdJIJtpzKrYbSawb4j6zCp1s5py/fXXn9S+7rrrShqJ2egVefdXo6TJ6f0kYBHweroWQrpT6wbg1bTLBmB5ugtsIfBuROwHNgNLJE1JF+iXAJvTtvckLUzHWg48WdT5mBVl/fr1J7WfeOKJkkZiNnpFzlSmA89L2gFsJbum8hTwLUk7gZ3ABcADqf9G4A2gC/gG8HmAiDgE3J+OsRW4L9UAbgO+mfb5P8CmAs/HrBD9n0q8ZcuWkkZiNnr1RR04InYAn6hSv2qA/gGsGGDbGmBNlXoncPHoRmpWrv53f/luMKtl/kW9Wcn6P6W4f9usljhUzErW2trKhAnZP4oTJkygtbW15BGZjZxDxaxkDQ0NH/yK/sorr6ShoaHkEZmNnEPFzMxy41AxK1lvby8vvPACAC+88AK9vb0lj8hs5BwqZiVra2vjxIkTAJw4cYK2traSR2Q2cg4Vs5L1/51K/7ZZLXGomJUs+4nWwG2zWuJQMSvZJz/5yZPa/ddXMaslDhWzkp133nkntc8999wBepqNfw4Vs5J5PRU7kzhUzEq2aNEi6urqAKirq/N6KlbTHCpmJWtpafng4nxEsHz58pJHZDZyDhUzM8uNQ8WsZO3t7R887l4Sa9euLXlEZiNX5MqP50l6WdIPJe2S9KepfqGklyTtkfS4pHNS/dzU7krbZ1cc655U/5GkayrqzanWJenuos7FrEhbtmzh+PHjABw/fpyOjo6SR2Q2ckXOVI4CV0XEx4H5QHNaJvgrwEMRMRc4DNya+t8KHI6IOcBDqR+S5gE3Ax8DmoGvS6qTVAd8DVgKzANuSX3NasqiRYuor8/Wy6uvr/eFeqtphYVKZH6emhPTK4CrgG+nejvZOvUAy1KbtP3qtPb8MmBdRByNiDfJlg5ekF5dEfFGRPwCWJf6mtWUlpaWD9ZTqaur84V6q2mFXlNJM4rtwEGgg2wd+Xci4ljq0g3MSO9nAG8BpO3vAg2V9X77DFSvNo5WSZ2SOnt6evI4NbPcNDQ00NzcjCSam5u9norVtEJDJSKOR8R8YCbZzOKj1bqlv9UW5o4R1KuNoy0imiKiqbGxceiBm42xlpYWLrnkEs9SrObVj8WHRMQ7kr4HLAQmS6pPs5GZwL7UrRuYBXRLqgd+DThUUe9Tuc9AdbOa0tDQwKpVq8oehtmoFXn3V6Okyen9JGARsBt4Hvhs6tYCPJneb0ht0vbnIvtF2Abg5nR32IXAXOBlYCswN91Ndg7ZxfwNRZ2PmZkNrciZynSgPd2lNQFYHxFPSXoNWCfpAeAV4NHU/1HgryV1kc1QbgaIiF2S1gOvAceAFRFxHEDS7cBmoA5YExG7CjwfMzMbgs62tRuampqis7Oz7GGYmdUUSdsiommofv5FvZmZ5cahYmZmuRmTu7/MqnnkkUfo6uoqexjjwt69ewGYMaPqT63OOnPmzOGOO+4oexg2Ag4Vs3Hg/fffL3sIZrlwqFhp/F+i/2LlypUAPPzwwyWPxGx0fE3FzMxy41AxM7PcOFTMzCw3ww4VSb8uaVF6P0nSrxY3LDMzq0XDChVJ/41sjZO/TKWZwD8UNSgzM6tNw52prACuAH4GEBF7gA8XNSgzM6tNww2Vo2l1RQDSo+nProeGmZnZkIYbKv9L0heBSZIWA08A3y1uWGZmVouGGyp3Az3ATuAPgI3AnxQ1KDMzq03D/UX9JLL1Sr4B2drzqXakqIGZmVntGe5M5VmyEOkzCdiS/3DMzKyWDTdUzouIn/c10vsPDbaDpFmSnpe0W9IuSStT/UuS9kranl7XVuxzj6QuST+SdE1FvTnVuiTdXVG/UNJLkvZIejwtK2xmZiUZbqj8s6RL+xqSLgOGeqzqMeAPI+KjwEJghaR5adtDETE/vTamY84jW0L4Y0Az8HVJdemrtq8BS4F5wC0Vx/lKOtZc4DBw6zDPx8zMCjDcaypfAJ6QtC+1pwP/cbAdImI/sD+9f0/SbmCwxSKWAesi4ijwZlqrfkHa1hURbwBIWgcsS8e7Cvi91Kcd+BKwepjnZGZmORvWTCUitgIXAbcBnwc+GhHbhvshkmYDnwBeSqXbJe2QtEbSlFSbAbxVsVt3qg1UbwDeiYhj/erVPr9VUqekzp6enuEO28zMTtOgoSLpqvT3PwDXAf8GmAtcl2pDkvQrwN8BX4iIn5HNJH4TmE82k/mzvq5Vdo8R1E8tRrRFRFNENDU2Ng5n2GZmNgJDff3174DnyAKlvwC+M9jOkiaSBcq3IuI7ABFxoGL7N4CnUrMbmFWx+0yg7+u2avW3gcmS6tNspbK/mZmVYNBQiYh7JU0ANkXE+tM5sCQBjwK7I+KrFfXp6XoLwO8Cr6b3G4C/kfRV4F+TzYheJpuRzJV0IbCX7GL+70VESHoe+CywDmgBnjydMZqZWb6GvFAfESck3Q6cVqiQPYDy94Gdkran2hfJ7t6aTzbT+THZL/SJiF2S1gOvkd05tiIijgOkz98M1JH9CHNXOt5dwDpJDwCvkIWYmZmVZLh3f3VI+h/A48A/9xUj4tBAO0TEP1L9usfGQfZ5EHiwSn1jtf3SHWEL+tfNzKwcww2V/0o2s/h8v/pv5DscMzOrZcMNlXlkgfJJsnD5PvAXRQ3KzMxq03BDpZ1sga5VqX1Lqt1UxKDMzKw2DTdUfisiPl7Rfl7SD4sYkJmZ1a7hPvvrFUkL+xqSLgf+dzFDMjOzWjXcmcrlwHJJP03tjwC7Je0EIiL+bSGjMzOzmjLcUGkudBRmZnZGGFaoRMRPih6ImZnVvuFeUzEzMxuSQ8XMzHLjUDEzs9w4VMzMLDcOFTMzy41DxczMcuNQMTOz3BQWKpJmSXpe0m5JuyStTPWpkjok7Ul/p6S6JK2S1CVph6RLK47VkvrvkdRSUb9M0s60z6q02qSZmZWkyJnKMeAPI+KjwEJghaR5wN3AsxExF3g2tQGWki0hPBdoBVZDFkLAvWSPilkA3NsXRKlPa8V+/uW/mVmJCguViNgfEf+U3r8H7AZmAMvIHptP+ntDer8MWBuZF4HJkqYD1wAdEXEoIg4DHUBz2nZ+RPwgIgJYW3EsMzMrwZhcU5E0G/gE8BIwLSL2QxY8wIdTtxnAWxW7dafaYPXuKvVqn98qqVNSZ09Pz2hPx8zMBlB4qEj6FeDvgC9ExM8G61qlFiOon1qMaIuIpohoamxsHGrIZmY2QoWGiqSJZIHyrYj4TiofSF9dkf4eTPVuYFbF7jOBfUPUZ1apm5lZSYq8+0vAo8DuiPhqxaYNQN8dXC3AkxX15ekusIXAu+nrsc3AEklT0gX6JcDmtO09SQvTZy2vOJaZmZVguOupjMQVwO8DOyVtT7UvAl8G1ku6FfgpcGPathG4FugCjgCfA4iIQ5LuB7amfvdFxKH0/jbgMWASsCm9zMysJIWFSkT8I9WvewBcXaV/ACsGONYaYE2Veidw8SiGaWZmOfIv6s3MLDcOFTMzy41DxczMcuNQMTOz3DhUzMwsNw4VMzPLjUPFzMxy41AxM7PcOFTMzCw3DhUzM8uNQ8XMzHJT5AMlrYpHHnmErq6usodh40zf/ydWrlxZ8khsvJkzZw533HFH2cMYNofKGOvq6mL7q7s5/qGpZQ/FxpEJv8jWl9v2xoGSR2LjSd2RQ0N3GmccKiU4/qGpvH/RtWUPw8zGuUmvbyx7CKfN11TMzCw3DhUzM8tNkcsJr5F0UNKrFbUvSdoraXt6XVux7R5JXZJ+JOmainpzqnVJuruifqGklyTtkfS4pHOKOhczMxueImcqjwHNVeoPRcT89NoIIGkecDPwsbTP1yXVSaoDvgYsBeYBt6S+AF9Jx5oLHAZuLfBczMxsGAoLlYh4ARjurQvLgHURcTQi3iRbp35BenVFxBsR8QtgHbBMkoCrgG+n/duBG3I9ATMzO21lXFO5XdKO9PXYlFSbAbxV0ac71QaqNwDvRMSxfvWqJLVK6pTU2dPTk9d5mJlZP2MdKquB3wTmA/uBP0t1VekbI6hXFRFtEdEUEU2NjY2nN2IzMxu2Mf2dSkR88MsuSd8AnkrNbmBWRdeZwL70vlr9bWCypPo0W6nsb2ZmJRnTmYqk6RXN3wX67gzbANws6VxJFwJzgZeBrcDcdKfXOWQX8zdERADPA59N+7cAT47FOZiZ2cAKm6lI+lvg08AFkrqBe4FPS5pP9lXVj4E/AIiIXZLWA68Bx4AVEXE8Hed2YDNQB6yJiF3pI+4C1kl6AHgFeLSoczEzs+EpLFQi4pYq5QH/xR8RDwIPVqlvBE55VkFEvEF2d5iZmY0T/kW9mZnlxqFiZma5caiYmVluHCpmZpYbh4qZmeXGoWJmZrlxqJiZWW4cKmZmlhuHipmZ5cahYmZmuXGomJlZbhwqZmaWG4eKmZnlxqFiZma5caiYmVluilykaw3wGeBgRFycalOBx4HZZIt03RQRhyUJeBi4FjgC/JeI+Ke0TwvwJ+mwD0REe6pfBjwGTCJbb2VlWhFyXNu7dy91R95l0uunLBFjZnaSuiO97N17rOxhnJYiZyqPAc39ancDz0bEXODZ1AZYSraE8FygFVgNH4TQvcDlZAty3StpStpnderbt1//zzIzszFW5MqPL0ia3a+8jGyJYYB24HtkywIvA9ammcaLkian9ew/DXRExCEASR1As6TvAedHxA9SfS1wA7CpqPPJy4wZM/i/R+t5/6Jryx6KmY1zk17fyIwZ08oexmkZ62sq0yJiP0D6++FUnwG8VdGvO9UGq3dXqVclqVVSp6TOnp6eUZ+EmZlVN14u1KtKLUZQryoi2iKiKSKaGhsbRzhEMzMbyliHyoH0tRbp78FU7wZmVfSbCewboj6zSt3MzEo01qGyAWhJ71uAJyvqy5VZCLybvh7bDCyRNCVdoF8CbE7b3pO0MN05trziWGZmVpIibyn+W7IL7RdI6ia7i+vLwHpJtwI/BW5M3TeS3U7cRXZL8ecAIuKQpPuBranffX0X7YHb+JdbijdRAxfpzczOdEXe/XXLAJuurtI3gBUDHGcNsKZKvRO4eDRjNDOzfI2XC/VmZnYGcKiYmVluHCpmZpYbh4qZmeWmsAv1NrC6I4f8QEk7yYT/9zMATpx3fskjsfGk7sghoLYe0+JQGWNz5swpewg2DnV1vQfAnN+orX+BWNGm1dy/MxwqY+yOO+4oewg2Dq1cuRKAhx9+uOSRmI2Or6mYmVluHCpmZpYbh4qZmeXGoWJmZrlxqJiZWW4cKmZmlhuHipmZ5cahYmZmuXGomJlZbkoJFUk/lrRT0nZJnak2VVKHpD3p75RUl6RVkrok7ZB0acVxWlL/PZJaBvo8MzMbG2U+puXfR8TbFe27gWcj4suS7k7tu4ClwNz0uhxYDVwuaSrZEsVNQADbJG2IiMNjeRI2co888ghdXV1lD2Nc6Pvfoe9xLWe7OXPm+JFGNWo8ff21DGhP79uBGyrqayPzIjBZ0nTgGqAjIg6lIOkAmsd60GZ5mDRpEpMmTSp7GGajVtZMJYBnJAXwlxHRBkyLiP0AEbFf0odT3xnAWxX7dqfaQPVTSGoFWgE+8pGP5HkeNgr+L1GzM09ZoXJFROxLwdEh6fVB+qpKLQapn1rMQqsNoKmpqWofMzMbvVK+/oqIfenvQeDvgQXAgfS1FunvwdS9G5hVsftMYN8gdTMzK8mYh4qkfyXpV/veA0uAV4ENQN8dXC3Ak+n9BmB5ugtsIfBu+ppsM7BE0pR0p9iSVDMzs5KU8fXXNODvJfV9/t9ExNOStgLrJd0K/BS4MfXfCFwLdAFHgM8BRMQhSfcDW1O/+yLi0NidhpmZ9aeIs+sSQ1NTU3R2dpY9DDOzmiJpW0Q0DdVvPN1SbGZmNc6hYmZmuXGomJlZbs66ayqSeoCflD0OsyouAN4espdZOX49IhqH6nTWhYrZeCWpczgXQs3GM3/9ZWZmuXGomJlZbhwqZuNHW9kDMBstX1MxM7PceKZiZma5caiYmVluHCpmZpYbh4qZmeXGoWJmZrn5/wI8/AHN+it9AAAAAElFTkSuQmCC\n",
       "text/plain": [
-       "<matplotlib.figure.Figure at 0x29379cb6860>"
+       "<matplotlib.figure.Figure at 0x1d481fb8208>"
       ]
      },
      "metadata": {},
@@ -7237,10 +5501,239 @@
     }
    ],
    "source": [
+    "#3\n",
     "sns.boxplot(y='price', data=auto_mean)\n",
     "plt.show()"
    ]
   },
+  {
+   "cell_type": "code",
+   "execution_count": 23,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "[13495.0,\n",
+       " 16500.0,\n",
+       " 16500.0,\n",
+       " 13950.0,\n",
+       " 17450.0,\n",
+       " 15250.0,\n",
+       " 17710.0,\n",
+       " 18920.0,\n",
+       " 23875.0,\n",
+       " 13207.129353233831,\n",
+       " 16430.0,\n",
+       " 16925.0,\n",
+       " 20970.0,\n",
+       " 21105.0,\n",
+       " 24565.0,\n",
+       " 5151.0,\n",
+       " 6295.0,\n",
+       " 6575.0,\n",
+       " 5572.0,\n",
+       " 6377.0,\n",
+       " 7957.0,\n",
+       " 6229.0,\n",
+       " 6692.0,\n",
+       " 7609.0,\n",
+       " 8921.0,\n",
+       " 12964.0,\n",
+       " 6479.0,\n",
+       " 6855.0,\n",
+       " 5399.0,\n",
+       " 6529.0,\n",
+       " 7129.0,\n",
+       " 7295.0,\n",
+       " 7295.0,\n",
+       " 7895.0,\n",
+       " 9095.0,\n",
+       " 8845.0,\n",
+       " 10295.0,\n",
+       " 12945.0,\n",
+       " 10345.0,\n",
+       " 6785.0,\n",
+       " 13207.129353233831,\n",
+       " 13207.129353233831,\n",
+       " 11048.0,\n",
+       " 5195.0,\n",
+       " 6095.0,\n",
+       " 6795.0,\n",
+       " 6695.0,\n",
+       " 7395.0,\n",
+       " 10945.0,\n",
+       " 11845.0,\n",
+       " 13645.0,\n",
+       " 15645.0,\n",
+       " 8845.0,\n",
+       " 8495.0,\n",
+       " 10595.0,\n",
+       " 10245.0,\n",
+       " 11245.0,\n",
+       " 18280.0,\n",
+       " 18344.0,\n",
+       " 25552.0,\n",
+       " 28248.0,\n",
+       " 28176.0,\n",
+       " 16503.0,\n",
+       " 5389.0,\n",
+       " 6189.0,\n",
+       " 6669.0,\n",
+       " 7689.0,\n",
+       " 9959.0,\n",
+       " 8499.0,\n",
+       " 12629.0,\n",
+       " 14869.0,\n",
+       " 14489.0,\n",
+       " 6989.0,\n",
+       " 8189.0,\n",
+       " 9279.0,\n",
+       " 9279.0,\n",
+       " 5499.0,\n",
+       " 7099.0,\n",
+       " 6649.0,\n",
+       " 6849.0,\n",
+       " 7349.0,\n",
+       " 7299.0,\n",
+       " 7799.0,\n",
+       " 7499.0,\n",
+       " 7999.0,\n",
+       " 8249.0,\n",
+       " 8949.0,\n",
+       " 9549.0,\n",
+       " 13499.0,\n",
+       " 14399.0,\n",
+       " 13499.0,\n",
+       " 17199.0,\n",
+       " 19699.0,\n",
+       " 18399.0,\n",
+       " 11900.0,\n",
+       " 13200.0,\n",
+       " 12440.0,\n",
+       " 13860.0,\n",
+       " 15580.0,\n",
+       " 16900.0,\n",
+       " 16695.0,\n",
+       " 17075.0,\n",
+       " 16630.0,\n",
+       " 17950.0,\n",
+       " 18150.0,\n",
+       " 5572.0,\n",
+       " 7957.0,\n",
+       " 6229.0,\n",
+       " 6692.0,\n",
+       " 7609.0,\n",
+       " 8921.0,\n",
+       " 12764.0,\n",
+       " 22018.0,\n",
+       " 13207.129353233831,\n",
+       " 9295.0,\n",
+       " 9895.0,\n",
+       " 11850.0,\n",
+       " 12170.0,\n",
+       " 15040.0,\n",
+       " 15510.0,\n",
+       " 18150.0,\n",
+       " 18620.0,\n",
+       " 5118.0,\n",
+       " 7053.0,\n",
+       " 7603.0,\n",
+       " 7126.0,\n",
+       " 7775.0,\n",
+       " 9960.0,\n",
+       " 9233.0,\n",
+       " 11259.0,\n",
+       " 7463.0,\n",
+       " 10198.0,\n",
+       " 8013.0,\n",
+       " 11694.0,\n",
+       " 5348.0,\n",
+       " 6338.0,\n",
+       " 6488.0,\n",
+       " 6918.0,\n",
+       " 7898.0,\n",
+       " 8778.0,\n",
+       " 6938.0,\n",
+       " 7198.0,\n",
+       " 7898.0,\n",
+       " 7788.0,\n",
+       " 7738.0,\n",
+       " 8358.0,\n",
+       " 9258.0,\n",
+       " 8058.0,\n",
+       " 8238.0,\n",
+       " 9298.0,\n",
+       " 9538.0,\n",
+       " 8449.0,\n",
+       " 9639.0,\n",
+       " 9989.0,\n",
+       " 11199.0,\n",
+       " 11549.0,\n",
+       " 17669.0,\n",
+       " 8948.0,\n",
+       " 10698.0,\n",
+       " 9988.0,\n",
+       " 10898.0,\n",
+       " 11248.0,\n",
+       " 16558.0,\n",
+       " 15998.0,\n",
+       " 15690.0,\n",
+       " 15750.0,\n",
+       " 7775.0,\n",
+       " 7975.0,\n",
+       " 7995.0,\n",
+       " 8195.0,\n",
+       " 8495.0,\n",
+       " 9495.0,\n",
+       " 9995.0,\n",
+       " 11595.0,\n",
+       " 9980.0,\n",
+       " 13295.0,\n",
+       " 13845.0,\n",
+       " 12290.0,\n",
+       " 12940.0,\n",
+       " 13415.0,\n",
+       " 15985.0,\n",
+       " 16515.0,\n",
+       " 18420.0,\n",
+       " 18950.0,\n",
+       " 16845.0,\n",
+       " 19045.0,\n",
+       " 21485.0,\n",
+       " 22470.0,\n",
+       " 22625.0]"
+      ]
+     },
+     "execution_count": 23,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAADuCAYAAADSkstYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAADstJREFUeJzt3W2MnWWdx/Hvz1bdimtopbJkWrbsThNFX6BOoIlvXE1qwRdlE01gE2lcsjUGujXxBWhIMFISfKGmNEq2ro0lcWXJqqFZ63YbojEmogxKeLBseoJV+rBQtojEshrwvy/mHj3b67QznTP0zOj3k5ycc65z3WeuQ0i/cz/MTKoKSZL6vWrUC5AkLTzGQZLUMA6SpIZxkCQ1jIMkqWEcJEkN4yBJahgHSVLDOEiSGktHvYC5uuCCC2rNmjWjXoYkLSoPPfTQs1W1cqZ5izYOa9asYXJyctTLkKRFJcnPZzPPw0qSpIZxkCQ1jIMkqWEcJEkN4yDNo16vx/vf/356vd6olyINxThI82jbtm38+te/Ztu2baNeijQU4yDNk16vx6FDhwA4dOiQew9a1IyDNE9O3Vtw70GLmXGQ5sn0XsPpnkuLiXGQ5smpv87FX++ixcw4SPPklltuOeNzaTExDtI8GR8f//3ewpo1axgfHx/tgqQhGAdpHt1yyy2cd9557jVo0Vu0v5VVWojGx8f51re+NeplSENzz0GS1DAOkqSGcZAkNYyDJKlhHCRJDeMgSWoYB0lSwzhIkhrGQZLUMA6SpIZxkCQ1jIMkqWEcJEkN4yBJahgHSVLDOEiSGv6xHw1tx44d9Hq9US9jQThy5AgAY2NjI17JwjA+Ps6WLVtGvQzNgXGQ5tGLL7446iVI82LGOCRZDdwN/AXwO2BnVW1P8ingH4Dj3dRPVtXebptPANcDLwP/WFX7uvENwHZgCfDPVXVHN34JcA+wAvgx8KGq+u18fUi9svzO8A+2bt0KwPbt20e8Emk4sznn8BLw8ap6C7AOuCHJpd1rn6+qy7rbdBguBa4B3gpsAL6YZEmSJcAXgCuBS4Fr+97nM917rQWeYyoskqQRmTEOVXWsqn7cPX4BOACc6YDqRuCeqvpNVf0M6AGXd7deVT3Z7RXcA2xMEuA9wL912+8Grp7rB5IkDe+srlZKsgZ4O/DDbujGJI8k2ZVkeTc2BjzVt9nhbux0428EfllVL50yLkkakVnHIcnrga8DH6uqXwF3AX8NXAYcAz47PXXA5jWH8UFr2JxkMsnk8ePHB02RJM2DWcUhyauZCsNXq+obAFX1dFW9XFW/A77E1GEjmPrOf3Xf5quAo2cYfxY4P8nSU8YbVbWzqiaqamLlypWzWbokaQ5mjEN3TuDLwIGq+lzf+EV90/4WeKx7vAe4Jslru6uQ1gI/Ah4E1ia5JMlrmDppvaeqCvgO8IFu+03AfcN9LEnSMGbzcw7vAj4EPJrk4W7sk0xdbXQZU4eADgEfAaiqx5PcC/yUqSudbqiqlwGS3AjsY+pS1l1V9Xj3fjcB9yTZBvyEqRhJkkZkxjhU1fcZfF5g7xm2uR24fcD43kHbVdWT/OGwlCRpxPzdSpKkhnGQJDWMgySpYRwkSQ3jIElqGAdJUsM4SJIaxkGS1DAOkqSGcZAkNYyDJKlhHCRJDeMgSWoYB0lSwzhIkhrGQZLUMA6SpIZxkCQ1jIMkqWEcJEkN4yBJahgHSVLDOEiSGsZBktQwDpKkhnGQJDWMgySpYRwkSQ3jIElqGAdJUsM4SJIaxkGS1DAOkqSGcZAkNWaMQ5LVSb6T5ECSx5Ns7cZXJNmf5GB3v7wbT5I7k/SSPJLkHX3vtambfzDJpr7xdyZ5tNvmziR5JT6sJGl2ZrPn8BLw8ap6C7AOuCHJpcDNwP1VtRa4v3sOcCWwtrttBu6CqZgAtwJXAJcDt04HpZuzuW+7DcN/NEnSXM0Yh6o6VlU/7h6/ABwAxoCNwO5u2m7g6u7xRuDumvIAcH6Si4D3Afur6kRVPQfsBzZ0r72hqn5QVQXc3fdekqQROKtzDknWAG8HfghcWFXHYCogwJu6aWPAU32bHe7GzjR+eMD4oK+/Oclkksnjx4+fzdIlSWdh1nFI8nrg68DHqupXZ5o6YKzmMN4OVu2sqomqmli5cuVMS5YkzdGs4pDk1UyF4atV9Y1u+OnukBDd/TPd+GFgdd/mq4CjM4yvGjAuSRqR2VytFODLwIGq+lzfS3uA6SuONgH39Y1f1121tA54vjvstA9Yn2R5dyJ6PbCve+2FJOu6r3Vd33tJkkZg6SzmvAv4EPBokoe7sU8CdwD3Jrke+AXwwe61vcBVQA84CXwYoKpOJLkNeLCb9+mqOtE9/ijwFWAZ8O3uJkkakRnjUFXfZ/B5AYD3DphfwA2nea9dwK4B45PA22ZaiyTp3PAnpCVJDeMgSWoYB0lSwzhIkhrGQZLUMA6SpIZxkCQ1jIMkqWEcJEkN4yBJahgHSVLDOEiSGsZBktQwDpKkhnGQJDWMgySpYRwkSQ3jIElqGAdJUsM4SJIaxkGS1DAOkqSGcZAkNYyDJKlhHCRJDeMgSWoYB0lSwzhIkhrGQZLUMA6SpIZxkCQ1jIMkqWEcJEkN4yBJaswYhyS7kjyT5LG+sU8lOZLk4e52Vd9rn0jSS/JfSd7XN76hG+slublv/JIkP0xyMMm/JnnNfH5ASdLZm82ew1eADQPGP19Vl3W3vQBJLgWuAd7abfPFJEuSLAG+AFwJXApc280F+Ez3XmuB54Drh/lAkqThLZ1pQlV9L8maWb7fRuCeqvoN8LMkPeDy7rVeVT0JkOQeYGOSA8B7gL/r5uwGPgXcNdsPMCo7duyg1+uNehlaYKb/n9i6deuIV6KFZnx8nC1btox6GbM2YxzO4MYk1wGTwMer6jlgDHigb87hbgzgqVPGrwDeCPyyql4aML+RZDOwGeDiiy8eYunD6/V6PPzYAV5+3YqRrkMLy6t+WwA89OTTI16JFpIlJ0+Meglnba5xuAu4Daju/rPA3wMZMLcYfPiqzjB/oKraCewEmJiYOO28c+Xl163gxTdfNfNESX/Slj2xd9RLOGtzikNV/f7boiRfAv69e3oYWN03dRVwtHs8aPxZ4PwkS7u9h/75kqQRmdOlrEku6nv6t8D0lUx7gGuSvDbJJcBa4EfAg8Da7sqk1zB10npPVRXwHeAD3fabgPvmsiZJ0vyZcc8hydeAdwMXJDkM3Aq8O8llTB0COgR8BKCqHk9yL/BT4CXghqp6uXufG4F9wBJgV1U93n2Jm4B7kmwDfgJ8ed4+nSRpTmZztdK1A4ZP+w94Vd0O3D5gfC/QHHjrrmC6/NRxSdLo+BPSkqSGcZAkNYyDJKlhHCRJDeMgSWoYB0lSwzhIkhrGQZLUMA6SpIZxkCQ1jIMkqWEcJEkN4yBJahgHSVLDOEiSGsZBktQwDpKkhnGQJDWMgySpYRwkSQ3jIElqGAdJUsM4SJIaxkGS1DAOkqSGcZAkNYyDJKlhHCRJDeMgSWoYB0lSwzhIkhrGQZLUMA6SpIZxkCQ1ZoxDkl1JnknyWN/YiiT7kxzs7pd340lyZ5JekkeSvKNvm03d/INJNvWNvzPJo902dybJfH9ISdLZmc2ew1eADaeM3QzcX1Vrgfu75wBXAmu722bgLpiKCXArcAVwOXDrdFC6OZv7tjv1a0mSzrGlM02oqu8lWXPK8Ebg3d3j3cB3gZu68burqoAHkpyf5KJu7v6qOgGQZD+wIcl3gTdU1Q+68buBq4FvD/OhzoUjR46w5OTzLHti76iXImmBW3Lyfzhy5KVRL+OszPWcw4VVdQygu39TNz4GPNU373A3dqbxwwPGB0qyOclkksnjx4/PcemSpJnMuOdwlgadL6g5jA9UVTuBnQATExOnnXcujI2N8d+/WcqLb75qlMuQtAgse2IvY2MXjnoZZ2Wuew5Pd4eL6O6f6cYPA6v75q0Cjs4wvmrAuCRphOYahz3A9BVHm4D7+sav665aWgc83x122gesT7K8OxG9HtjXvfZCknXdVUrX9b2XJGlEZjyslORrTJ1QviDJYaauOroDuDfJ9cAvgA920/cCVwE94CTwYYCqOpHkNuDBbt6np09OAx9l6oqoZUydiF7wJ6Ml6Y/dbK5WuvY0L713wNwCbjjN++wCdg0YnwTeNtM6JEnnjj8hLUlqGAdJUsM4SJIaxkGS1DAOkqSGcZAkNYyDJKlhHCRJDeMgSWoYB0lSwzhIkhrGQZLUmO8/9vMnZcnJE/6ZUP0/r/rfXwHwuz97w4hXooVkyckTwOL6Yz/GYY7Gx8dHvQQtQL3eCwCM/9Xi+odAr7QLF92/GcZhjrZs2TLqJWgB2rp1KwDbt28f8Uqk4XjOQZLUMA6SpIZxkCQ1jIMkqWEcJEkN4yBJahgHSVLDOEiSGsZBktQwDpKkhnGQJDWMgySpYRwkSQ3jIElqGAdJUsM4SJIaxkGS1DAOkqTGUHFIcijJo0keTjLZja1Isj/Jwe5+eTeeJHcm6SV5JMk7+t5nUzf/YJJNw30kSdKw5uNvSP9NVT3b9/xm4P6quiPJzd3zm4ArgbXd7QrgLuCKJCuAW4EJoICHkuypqufmYW06B3bs2EGv1xv1MhaE6f8O039L+k/d+Pi4f299kXolDittBHZ3j3cDV/eN311THgDOT3IR8D5gf1Wd6IKwH9jwCqxLesUtW7aMZcuWjXoZ0tCG3XMo4D+TFPBPVbUTuLCqjgFU1bEkb+rmjgFP9W17uBs73XgjyWZgM8DFF1885NI1X/zOUPrjM2wc3lVVR7sA7E/yxBnmZsBYnWG8HZyKz06AiYmJgXMkScMb6rBSVR3t7p8BvglcDjzdHS6iu3+mm34YWN23+Srg6BnGJUkjMuc4JDkvyZ9PPwbWA48Be4DpK442Afd1j/cA13VXLa0Dnu8OP+0D1idZ3l3ZtL4bkySNyDCHlS4Evplk+n3+par+I8mDwL1Jrgd+AXywm78XuAroASeBDwNU1YkktwEPdvM+XVUnhliXJGlIqVqch+4nJiZqcnJy1MuQpEUlyUNVNTHTPH9CWpLUMA6SpIZxkCQ1Fu05hyTHgZ+Peh3SABcAz844SxqNv6yqlTNNWrRxkBaqJJOzOeEnLWQeVpIkNYyDJKlhHKT5t3PUC5CG5TkHSVLDPQdJUsM4SJIaxkGS1DAOkqSGcZAkNf4PVu7X93tsaYYAAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<matplotlib.figure.Figure at 0x1d482f4cba8>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "price_kolom = auto_mean['price']\n",
+    "mean = price_kolom.mean()\n",
+    "std = price_kolom.std()\n",
+    "\n",
+    "batas_bawah =  mean - 2 * std\n",
+    "batas_atas =  mean + 2 * std\n",
+    "\n",
+    "final_price_without_outlier = [x for x in price_kolom if(x > batas_bawah)]\n",
+    "final_price_without_outlier = [x for x in final_price_without_outlier if(x < batas_atas)]\n",
+    "sns.boxplot(y=final_price_without_outlier)\n",
+    "final_price_without_outlier    "
+   ]
+  },
   {
    "cell_type": "code",
    "execution_count": null,
diff --git a/Lab_dsa_3/Soal/Jawaban_Lab3_AriefTritomo_1506689061.pdf b/Lab_dsa_3/Soal/Jawaban_Lab3_AriefTritomo_1506689061.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..56eed3c454c0b6968c71f3d9e68e7a4217df6b79
Binary files /dev/null and b/Lab_dsa_3/Soal/Jawaban_Lab3_AriefTritomo_1506689061.pdf differ
diff --git a/Lab_dsa_3/Soal/Tutorial_Lab3_AriefTritomo_1506689061.pdf b/Lab_dsa_3/Soal/Tutorial_Lab3_AriefTritomo_1506689061.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..559575d902dcf1d743933ad62238b3d1b07fcba9
Binary files /dev/null and b/Lab_dsa_3/Soal/Tutorial_Lab3_AriefTritomo_1506689061.pdf differ
diff --git a/Lab_dsa_3/Soal/codejawaban.py b/Lab_dsa_3/Soal/codejawaban.py
new file mode 100644
index 0000000000000000000000000000000000000000..e93efc0d1a41aba429bd9539b7bc91b5e5e03b16
--- /dev/null
+++ b/Lab_dsa_3/Soal/codejawaban.py
@@ -0,0 +1,140 @@
+
+# coding: utf-8
+
+# In[2]:
+
+
+import numpy as np
+import pandas as pd
+import scipy.stats as stats
+import matplotlib.pyplot as plt
+import random
+import math
+import seaborn as sns
+
+
+# In[3]:
+
+
+#1
+auto = pd.read_csv('automobile.csv', na_values=["?"])
+auto.isnull().sum()
+
+
+# In[4]:
+
+
+#2 delete row
+auto = auto.dropna()
+auto
+
+
+# In[5]:
+
+
+#2 fill with mean then drop NaN
+auto_mean = pd.read_csv('automobile.csv', na_values=["?"])
+auto_mean = auto_mean.fillna(auto_mean.mean())
+auto_mean = auto_mean.dropna()
+auto_mean
+
+
+# In[6]:
+
+
+#2 fill with median
+auto_median = pd.read_csv('automobile.csv', na_values=["?"])
+auto_median = auto_median.fillna(auto_median.median())
+auto_median.isnull().sum()
+
+
+# In[7]:
+
+
+#2 fill with mode
+auto_mode = pd.read_csv('automobile.csv', na_values=["?"])
+auto_mode.fillna(auto_mode.mode())
+
+
+# In[8]:
+
+
+#3
+sns.boxplot(y='price', data=auto_mean)
+plt.show()
+
+
+# In[9]:
+
+
+#4 Handle Outlier
+price_kolom = auto_mean['price']
+mean = price_kolom.mean()
+std = price_kolom.std()
+
+batas_bawah =  mean - 2 * std
+batas_atas =  mean + 2 * std
+
+final_price_without_outlier = [x for x in price_kolom if(x > batas_bawah)]
+final_price_without_outlier = [x for x in final_price_without_outlier if(x < batas_atas)]
+final_price_without_outlier
+
+
+# In[23]:
+
+
+#5 pearson
+auto_mean.corr(method='pearson').style.format("{:.2}").background_gradient(cmap=plt.get_cmap('coolwarm'), axis=1)
+
+
+# In[24]:
+
+
+#5 spearman
+auto_mean.corr(method="spearman").style.format("{:.2}").background_gradient(cmap=plt.get_cmap('coolwarm'), axis=1)
+
+
+# In[80]:
+
+
+#5 linear Regression
+from sklearn.linear_model import LinearRegression
+feature_cols = ['wheel-base','length','width','curb-weight','engine-size','horsepower','normalized-losses','height','stroke','bore']
+x = auto_mean[feature_cols]
+y = auto_mean['price']
+linreg = LinearRegression()
+linreg.fit(x,y)
+print(feature_cols,linreg.intercept_)
+print(feature_cols,linreg.coef_)
+
+
+# In[56]:
+
+
+from sklearn import metrics
+y_pred = linreg.predict(x)
+np.sqrt(metrics.mean_squared_error(y, y_pred))
+
+
+# In[33]:
+
+
+# Logistic Regression
+from sklearn.linear_model import LogisticRegression
+from sklearn.cross_validation import train_test_split
+logreg = LogisticRegression()
+average_price = np.mean(auto_mean['price'])
+temp = auto_mean['price'] >= average_price
+feature_cols = ['wheel-base','length','width','curb-weight','engine-size','horsepower','normalized-losses','height','stroke','bore']
+x = auto_mean[feature_cols]
+y = temp
+X_train, X_test, y_train, y_test = train_test_split(x, y)
+logreg.fit(X_train, y_train)
+logreg.score(X_test, y_test)
+
+
+# In[57]:
+
+
+y_pred
+
diff --git a/lab_dsa_2/.ipynb_checkpoints/lab2_arief-checkpoint.ipynb b/lab_dsa_2/.ipynb_checkpoints/lab2_arief-checkpoint.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..a0b40a6651a736d0b0d217fa0dd3fb013511c1e5
--- /dev/null
+++ b/lab_dsa_2/.ipynb_checkpoints/lab2_arief-checkpoint.ipynb
@@ -0,0 +1,440 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "%matplotlib inline\n",
+    "import numpy as np\n",
+    "import pandas as pd\n",
+    "import scipy.stats as stats\n",
+    "import matplotlib.pyplot as plt\n",
+    "import random\n",
+    "import math"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "43.002372"
+      ]
+     },
+     "execution_count": 3,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "np.random.seed(10)\n",
+    "population_ages1 = stats.poisson.rvs(loc=18, mu=35, size=150000)\n",
+    "population_ages2 = stats.poisson.rvs(loc=18, mu=10, size=100000)\n",
+    "population_ages = np.concatenate((population_ages1, population_ages2))\n",
+    "\n",
+    "population_ages.mean()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "42.388\n"
+     ]
+    },
+    {
+     "data": {
+      "text/plain": [
+       "0.614372000000003"
+      ]
+     },
+     "execution_count": 4,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "np.random.seed(6)\n",
+    "sample_ages = np.random.choice(a= population_ages, size=500)\n",
+    "print(sample_ages.mean())\n",
+    "population_ages.mean() - sample_ages.mean()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "[7, 1, 14, 3, 12]"
+      ]
+     },
+     "execution_count": 5,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "#optional_blue\n",
+    "c = list(range(0, 15))\n",
+    "random.sample(c, 5)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>City</th>\n",
+       "      <th>Colors Reported</th>\n",
+       "      <th>Shape Reported</th>\n",
+       "      <th>State</th>\n",
+       "      <th>Time</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>833</th>\n",
+       "      <td>Oklahoma City</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>LIGHT</td>\n",
+       "      <td>OK</td>\n",
+       "      <td>7/15/1963 22:00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>15130</th>\n",
+       "      <td>Lowell</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>RECTANGLE</td>\n",
+       "      <td>IN</td>\n",
+       "      <td>11/16/1999 18:00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>8081</th>\n",
+       "      <td>Lebanon</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>OR</td>\n",
+       "      <td>5/6/1995 23:30</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "                City Colors Reported Shape Reported State              Time\n",
+       "833    Oklahoma City             NaN          LIGHT    OK   7/15/1963 22:00\n",
+       "15130         Lowell             NaN      RECTANGLE    IN  11/16/1999 18:00\n",
+       "8081         Lebanon             NaN            NaN    OR    5/6/1995 23:30"
+      ]
+     },
+     "execution_count": 6,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "link = 'http://bit.ly/uforeports'\n",
+    "ufo = pd.read_csv(link)\n",
+    "ufo.sample(n=3)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "79.65384615384616\n"
+     ]
+    }
+   ],
+   "source": [
+    "#optional_blue\n",
+    "nilai_DSA = [60,65,67,70,90,94,75,78,98,92,80,81.5,85]\n",
+    "print(np.mean(nilai_DSA))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "84.67857142857143\n"
+     ]
+    }
+   ],
+   "source": [
+    "#optional_blue\n",
+    "nilai_DSA = [60,65,67,70,90,94,75,78,98,92,80,81.5,85,150]\n",
+    "print(np.mean(nilai_DSA))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "80.0\n",
+      "80.75\n"
+     ]
+    }
+   ],
+   "source": [
+    "#optional_blue\n",
+    "nilai_DSA = [60,65,67,70,90,94,75,78,98,92,80,81.5,85]\n",
+    "print(np.median(nilai_DSA))\n",
+    "nilai_DSA = [60,65,67,70,90,94,75,78,98,92,80,81.5,85,150]\n",
+    "print(np.median(nilai_DSA))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "789.0833333333334\n",
+      "769.5\n",
+      "425.1862255399261\n"
+     ]
+    }
+   ],
+   "source": [
+    "#optional_blue\n",
+    "friends = [109,1017,1127,418,625,957,89,950,946,797,981,125,455,731,1640,485,1309,472,1132,1773,906,531,742,621]\n",
+    "print(np.mean(friends))\n",
+    "print(np.median(friends))\n",
+    "print(np.std(friends))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD8CAYAAACRkhiPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAEq9JREFUeJzt3X+MXWd95/H3p6GgLgURyEBdO+kkyCAF1B1glI3EglLRQhJWDVSC2qog/NgaqmTbaPcPElbaoFapopaUFLVNZYqVRIKEaNM0VnGBgErTSgQyTt3EIQSc4JLBxp4mK5qKKquY7/5xz6wvzvy8P2bG87xf0uje+73POec5Psl85jzn3OemqpAktemn1rsDkqT1YwhIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGva89e7Acs4666yanJxc725I0mlj//79/1JVEytpu+FDYHJykpmZmfXuhiSdNpL880rbOhwkSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJatiyIZBkT5LjSQ721T6X5ED3czjJga4+meTf+977875l3pDkoSSHknwyScazS5KklVrJJ4ZvBv4EuHW+UFW/Pv88yQ3AD/vaP1ZVUwus5yZgF3AfsA+4GPib1XdZ0ulm8urPr6jd4evfPuae6FTLnglU1b3AUwu91/01/27gtqXWkWQL8OKq+lpVFb1AecfquytJGqVhrwm8CThWVd/pq52b5B+T/F2SN3W1rcBsX5vZrragJLuSzCSZmZubG7KLkqTFDBsCO/nJs4CjwDlV9TrgvwOfTfJiYKHx/1pspVW1u6qmq2p6YmJFE+FJkgYw8CyiSZ4H/BrwhvlaVT0DPNM935/kMeBV9P7y39a3+DbgyKDbliSNxjBnAr8MfKuq/v8wT5KJJGd0z88DtgOPV9VR4OkkF3bXEd4L3D3EtiVJI7CSW0RvA74GvDrJbJIPdm/t4LkXhN8MPJjkn4D/DXy4quYvKv8W8BfAIeAxvDNIktbdssNBVbVzkfr7FqjdCdy5SPsZ4LWr7J8kaYz8xLAkNcwQkKSGGQKS1DBDQJIaZghIUsMMAUlqmCEgSQ0beNoIScNZyfTKTq2scfNMQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJapghIEkNWzYEkuxJcjzJwb7ax5J8P8mB7ufSvveuSXIoyaNJ3tZXv7irHUpy9eh3RZK0Wis5E7gZuHiB+ieqaqr72QeQ5HxgB/Cabpk/S3JGkjOAPwUuAc4HdnZtJUnraNmppKvq3iSTK1zfZcDtVfUM8N0kh4ALuvcOVdXjAElu79p+c9U9liSNzDDXBK5M8mA3XHRmV9sKPNHXZrarLVaXJK2jQUPgJuCVwBRwFLihq2eBtrVEfUFJdiWZSTIzNzc3YBclScsZKASq6lhVnaiqHwOf4uSQzyxwdl/TbcCRJeqLrX93VU1X1fTExMQgXZQkrcBAIZBkS9/LdwLzdw7tBXYkeUGSc4HtwDeA+4HtSc5N8nx6F4/3Dt5tSdIoLHthOMltwEXAWUlmgWuBi5JM0RvSOQx8CKCqHk5yB70Lvs8CV1TViW49VwJfBM4A9lTVwyPfG0nSqqzk7qCdC5Q/vUT764DrFqjvA/atqneSpLHyE8OS1DBDQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJapghIEkNMwQkqWGGgCQ1zBCQpIYZApLUsGW/WUzS6Wny6s8v2+bw9W9fg55oI/NMQJIaZghIUsOWDYEke5IcT3Kwr/aHSb6V5MEkdyV5SVefTPLvSQ50P3/et8wbkjyU5FCSTybJeHZJkrRSKzkTuBm4+JTaPcBrq+oXgW8D1/S991hVTXU/H+6r3wTsArZ3P6euU5K0xpYNgaq6F3jqlNqXqurZ7uV9wLal1pFkC/DiqvpaVRVwK/COwbosSRqVUVwT+ADwN32vz03yj0n+LsmbutpWYLavzWxXkySto6FuEU3yP4Fngc90paPAOVX1ZJI3AH+V5DXAQuP/tcR6d9EbOuKcc84ZpouSpCUMfCaQ5HLgvwC/0Q3xUFXPVNWT3fP9wGPAq+j95d8/ZLQNOLLYuqtqd1VNV9X0xMTEoF2UJC1joBBIcjHwEeBXq+pHffWJJGd0z8+jdwH48ao6Cjyd5MLurqD3AncP3XtJ0lCWHQ5KchtwEXBWklngWnp3A70AuKe70/O+7k6gNwO/m+RZ4ATw4aqav6j8W/TuNPoZetcQ+q8jrImrvnAVB35wYK03Ky3oB89/ctk2F938hxt2/auxkr7A2vXndDD1c1PcePGNY9/OsiFQVTsXKH96kbZ3Ancu8t4M8NpV9U6SNFZNzR20FqkqrdRK5vb56vsGn9tn3OtfjZX0BdauPzrJaSMkqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSwwwBSWqYISBJDWvqw2Kj5hd5q1Ur/fCX//1vfJ4JSFLDDAFJapghIEkNMwQkqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSwwwBSWrYikIgyZ4kx5Mc7Ku9NMk9Sb7TPZ7Z1ZPkk0kOJXkwyev7lrm8a/+dJJePfnckSaux0jOBm4GLT6ldDXylqrYDX+leA1wCbO9+dgE3QS80gGuB/wRcAFw7HxySpPWxognkqureJJOnlC8DLuqe3wJ8FfhIV7+1qgq4L8lLkmzp2t5TVU8BJLmHXrDcNtQejJATwklqzTDXBF5RVUcBuseXd/WtwBN97Wa72mJ1SdI6GceF4SxQqyXqz11BsivJTJKZubm5kXZOknTSMCFwrBvmoXs83tVngbP72m0DjixRf46q2l1V01U1PTExMUQXJUlLGeZLZfYClwPXd49399WvTHI7vYvAP6yqo0m+CPx+38XgtwLXDLF9Nc5rONLwVhQCSW6jd2H3rCSz9O7yuR64I8kHge8B7+qa7wMuBQ4BPwLeD1BVTyX5PeD+rt3vzl8kliStj5XeHbRzkbfeskDbAq5YZD17gD0r7p0kaaz8juFNxOERSatlCGjFVhsyhpK08Tl3kCQ1zBCQpIYZApLUMENAkhrmhWFJG85KbioAbywYBc8EJKlhhoAkNcwQkKSGGQKS1DBDQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktSwpiaQu+oqOHBg8fd/8PiFy67jovsGbz9u4+7PuP997nv8yWXbX3jeywZe/0az0Y7XqNfdv/5xt9+MpqbgxhvHvx3PBCSpYQOfCSR5NfC5vtJ5wP8CXgL8JjDX1T9aVfu6Za4BPgicAH67qr446PYHsVyqTl69/J8VX/2J79BdXftxG3d/xv3vc7r/+6/WRjteo153//rH3V6DGzgEqupRYAogyRnA94G7gPcDn6iqj/e3T3I+sAN4DfDzwJeTvKqqTgzaB0nScEY1HPQW4LGq+ucl2lwG3F5Vz1TVd4FDwAUj2r4kaQCjCoEdwG19r69M8mCSPUnO7GpbgSf62sx2tedIsivJTJKZubm5hZpIkkZg6LuDkjwf+FXgmq50E/B7QHWPNwAfALLA4rXQOqtqN7AbYHp6esE2kjQov77ypFHcInoJ8EBVHQOYfwRI8ingr7uXs8DZfcttA46MYPvShrCSXywt/FLR6WUUw0E76RsKSrKl7713Age753uBHUlekORcYDvwjRFsX5I0oKHOBJL8B+BXgA/1lf8gyRS9oZ7D8+9V1cNJ7gC+CTwLXOGdQZK0voYKgar6EfCyU2rvWaL9dcB1w2xTkjQ6fmJYkhpmCEhSwwwBSWqYISBJDTMEJKlhhoAkNcwQkKSGGQKS1DBDQJIa1tR3DJ9unJBM2hg286yjnglIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJatjQ00YkOQw8DZwAnq2q6SQvBT4HTAKHgXdX1f9JEuCPgUuBHwHvq6oHhu2DpLZt5mkdxm1UZwK/VFVTVTXdvb4a+EpVbQe+0r0GuATY3v3sAm4a0fYlSQMY13DQZcAt3fNbgHf01W+tnvuAlyTZMqY+SJKWMYoQKOBLSfYn2dXVXlFVRwG6x5d39a3AE33Lzna1n5BkV5KZJDNzc3Mj6KIkaSGjmEr6jVV1JMnLgXuSfGuJtlmgVs8pVO0GdgNMT08/531J0mgMHQJVdaR7PJ7kLuAC4FiSLVV1tBvuOd41nwXO7lt8G3Bk2D5ILfD7JTQOQw0HJXlhkhfNPwfeChwE9gKXd80uB+7unu8F3pueC4Efzg8bSZLW3rBnAq8A7urd+cnzgM9W1ReS3A/ckeSDwPeAd3Xt99G7PfQQvVtE3z/k9iWNiGcabRoqBKrqceA/LlB/EnjLAvUCrhhmm5Kk0fE7hqVF+JexWuC0EZLUMENAkhpmCEhSw7wmsIYcY5a00XgmIEkNMwQkqWGGgCQ1zBCQpIal9yHejWt6erpmZmZGs7KrroIDBxZ9+77Hn1x2FRee97JN0361Nlr/3d/1a7+Sti23H4mpKbjxxoEWTbK/70u+luSZgCQ1rK0zgWWs9hbO0739am20/ru/69d+td/p21r79eaZgCRpRQwBSWqYISBJDTMEJKlhhoAkNcwQkKSGGQKS1DBDQJIaNnAIJDk7yd8meSTJw0l+p6t/LMn3kxzofi7tW+aaJIeSPJrkbaPYAUnS4Ib5Uplngf9RVQ8keRGwP8k93XufqKqP9zdOcj6wA3gN8PPAl5O8qqpODNEHSdIQBj4TqKqjVfVA9/xp4BFg6xKLXAbcXlXPVNV3gUPABYNuX5I0vJFcE0gyCbwO+HpXujLJg0n2JDmzq20FnuhbbJalQ0OSNGZDh0CSnwXuBK6qqn8FbgJeCUwBR4Eb5psusPiCs9cl2ZVkJsnM3NzcsF2UJC1iqBBI8tP0AuAzVfWXAFV1rKpOVNWPgU9xcshnFji7b/FtwJGF1ltVu6tquqqmJyYmhumiJGkJw9wdFODTwCNV9Ud99S19zd4JHOye7wV2JHlBknOB7cA3Bt2+JGl4w9wd9EbgPcBDSea/ruujwM4kU/SGeg4DHwKoqoeT3AF8k96dRVd4Z5Akra+BQ6Cq/oGFx/n3LbHMdcB1g25TkjRafmJYkhpmCEhSwwwBSWqYISBJDTMEJKlhhoAkNcwQkKSGGQKS1DBDQJIaNsy0EdJpZfLqzy/b5vD1b1+Dnkgbh2cCktSwTX0m4F9+krQ0zwQkqWGb+kxAS/NMSZJnApLUMENAkhpmCEhSwwwBSWqYISBJDTMEJKlhax4CSS5O8miSQ0muXuvtS5JOWtMQSHIG8KfAJcD5wM4k569lHyRJJ631mcAFwKGqeryq/i9wO3DZGvdBktRZ6xDYCjzR93q2q0mS1kGqau02lrwLeFtV/dfu9XuAC6rqv53Sbhewq3v5auDREXbjLOBfRri+ja6l/W1pX8H93eyG2d9fqKqJlTRc67mDZoGz+15vA46c2qiqdgO7x9GBJDNVNT2OdW9ELe1vS/sK7u9mt1b7u9bDQfcD25Ocm+T5wA5g7xr3QZLUWdMzgap6NsmVwBeBM4A9VfXwWvZBknTSmk8lXVX7gH1rvd0+Yxlm2sBa2t+W9hXc381uTfZ3TS8MS5I2FqeNkKSGNRMCrU1XkeRwkoeSHEgys979GbUke5IcT3Kwr/bSJPck+U73eOZ69nGUFtnfjyX5fneMDyS5dD37OEpJzk7yt0keSfJwkt/p6pvyGC+xv2M/xk0MB3XTVXwb+BV6t6neD+ysqm+ua8fGKMlhYLqqNuV91UneDPwbcGtVvbar/QHwVFVd3wX9mVX1kfXs56gssr8fA/6tqj6+nn0bhyRbgC1V9UCSFwH7gXcA72MTHuMl9vfdjPkYt3Im4HQVm0xV3Qs8dUr5MuCW7vkt9P4n2hQW2d9Nq6qOVtUD3fOngUfozS6wKY/xEvs7dq2EQIvTVRTwpST7u09gt+AVVXUUev9TAS9f5/6shSuTPNgNF22KoZFTJZkEXgd8nQaO8Sn7C2M+xq2EQBaobfZxsDdW1evpzdh6RTecoM3lJuCVwBRwFLhhfbszekl+FrgTuKqq/nW9+zNuC+zv2I9xKyGwoukqNpOqOtI9Hgfuojckttkd68ZW58dYj69zf8aqqo5V1Ymq+jHwKTbZMU7y0/R+IX6mqv6yK2/aY7zQ/q7FMW4lBJqariLJC7uLSyR5IfBW4ODSS20Ke4HLu+eXA3evY1/Gbv6XYeedbKJjnCTAp4FHquqP+t7alMd4sf1di2PcxN1BAN2tVTdycrqK69a5S2OT5Dx6f/1D71Phn91s+5vkNuAiejMtHgOuBf4KuAM4B/ge8K6q2hQXUxfZ34voDRMUcBj40Px4+ekuyX8G/h54CPhxV/4ovXHyTXeMl9jfnYz5GDcTApKk52plOEiStABDQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhv0/wHNHa2eXNdIAAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<matplotlib.figure.Figure at 0x248b1a691d0>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "Text(0.5,0,'None')"
+      ]
+     },
+     "execution_count": 11,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEKCAYAAAARnO4WAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAADtRJREFUeJzt3XGM33ddx/Hni5VJhDmMLYa0hc3YOZqFOLjMEQyMgKRbTJuYhbRhIrjQBB0YQJIZDOD4Q4UQDLEKVXFChDH4AxpSUhMcQYGS3pxM2qXJWZBdRrICc/6xsDF5+8fvN+7n7dr77u53d+Xez0fS7L6/3+f3u/c+uT776/fu922qCknS5ve0jR5AkrQ+DL4kNWHwJakJgy9JTRh8SWrC4EtSE8sGP8lHkzyY5JvnuD9JPpRkLsm9SV40/TElSas15BX+7cCe89x/PbBr/Osg8NerH0uSNG3LBr+qvgz84DxL9gEfq5HjwLOTPHdaA0qSpmPLFJ5jO3D/xPH8+LbvLl6Y5CCjvwXwzGc+88VXXnnlFD69JPVx9913f6+qtq3ksdMIfpa4bcnrNVTVYeAwwMzMTM3Ozk7h00tSH0n+a6WPncZP6cwDOyeOdwAPTOF5JUlTNI3gHwFeN/5pnWuBh6vqSadzJEkba9lTOkk+CVwHbE0yD7wbeDpAVX0YOArcAMwBjwBvWKthJUkrt2zwq+rAMvcX8PtTm0iStCZ8p60kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNDAp+kj1JTieZS3LrEvc/L8ldSe5Jcm+SG6Y/qiRpNZYNfpKLgEPA9cBu4ECS3YuW/TFwZ1VdDewH/mrag0qSVmfIK/xrgLmqOlNVjwF3APsWrSng58YfXwo8ML0RJUnTMCT424H7J47nx7dNeg9wU5J54Cjw5qWeKMnBJLNJZs+ePbuCcSVJKzUk+Fnitlp0fAC4vap2ADcAH0/ypOeuqsNVNVNVM9u2bXvq00qSVmxI8OeBnRPHO3jyKZubgTsBquprwDOArdMYUJI0HUOCfwLYleTyJBcz+qbskUVrvgO8EiDJCxgF33M2knQBWTb4VfU4cAtwDLiP0U/jnExyW5K942VvB96Y5BvAJ4HXV9Xi0z6SpA20ZciiqjrK6Juxk7e9a+LjU8BLpzuaJGmafKetJDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJamJQcFPsifJ6SRzSW49x5rXJDmV5GSST0x3TEnSam1ZbkGSi4BDwG8A88CJJEeq6tTEml3AHwEvraqHkjxnrQaWJK3MkFf41wBzVXWmqh4D7gD2LVrzRuBQVT0EUFUPTndMSdJqDQn+duD+ieP58W2TrgCuSPKVJMeT7FnqiZIcTDKbZPbs2bMrm1iStCJDgp8lbqtFx1uAXcB1wAHgb5M8+0kPqjpcVTNVNbNt27anOqskaRWGBH8e2DlxvAN4YIk1n6uqH1XVt4DTjP4AkCRdIIYE/wSwK8nlSS4G9gNHFq35LPAKgCRbGZ3iOTPNQSVJq7Ns8KvqceAW4BhwH3BnVZ1McluSveNlx4DvJzkF3AW8o6q+v1ZDS5KeulQtPh2/PmZmZmp2dnZDPrck/bRKcndVzazksb7TVpKaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYGBT/JniSnk8wlufU8625MUklmpjeiJGkalg1+kouAQ8D1wG7gQJLdS6y7BHgL8PVpDylJWr0hr/CvAeaq6kxVPQbcAexbYt17gfcBP5zifJKkKRkS/O3A/RPH8+PbfiLJ1cDOqvr8+Z4oycEks0lmz549+5SHlSSt3JDgZ4nb6id3Jk8DPgi8fbknqqrDVTVTVTPbtm0bPqUkadWGBH8e2DlxvAN4YOL4EuAq4EtJvg1cCxzxG7eSdGEZEvwTwK4klye5GNgPHHnizqp6uKq2VtVlVXUZcBzYW1WzazKxJGlFlg1+VT0O3AIcA+4D7qyqk0luS7J3rQeUJE3HliGLquoocHTRbe86x9rrVj+WJGnafKetJDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJamJQcFPsifJ6SRzSW5d4v63JTmV5N4kX0zy/OmPKklajWWDn+Qi4BBwPbAbOJBk96Jl9wAzVfVC4DPA+6Y9qCRpdYa8wr8GmKuqM1X1GHAHsG9yQVXdVVWPjA+PAzumO6YkabWGBH87cP/E8fz4tnO5GfjCUnckOZhkNsns2bNnh08pSVq1IcHPErfVkguTm4AZ4P1L3V9Vh6tqpqpmtm3bNnxKSdKqbRmwZh7YOXG8A3hg8aIkrwLeCby8qh6dzniSpGkZ8gr/BLAryeVJLgb2A0cmFyS5GvgIsLeqHpz+mJKk1Vo2+FX1OHALcAy4D7izqk4muS3J3vGy9wPPAj6d5N+THDnH00mSNsiQUzpU1VHg6KLb3jXx8aumPJckacp8p60kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNDAp+kj1JTieZS3LrEvf/TJJPje//epLLpj2oJGl1lg1+kouAQ8D1wG7gQJLdi5bdDDxUVb8MfBD482kPKklanSGv8K8B5qrqTFU9BtwB7Fu0Zh/wD+OPPwO8MkmmN6YkabW2DFizHbh/4nge+LVzramqx5M8DPwC8L3JRUkOAgfHh48m+eZKht6EtrJorxpzLxa4FwvciwW/stIHDgn+Uq/UawVrqKrDwGGAJLNVNTPg82967sUC92KBe7HAvViQZHaljx1ySmce2DlxvAN44FxrkmwBLgV+sNKhJEnTNyT4J4BdSS5PcjGwHziyaM0R4HfGH98I/HNVPekVviRp4yx7Smd8Tv4W4BhwEfDRqjqZ5DZgtqqOAH8HfDzJHKNX9vsHfO7Dq5h7s3EvFrgXC9yLBe7FghXvRXwhLkk9+E5bSWrC4EtSE2sefC/LsGDAXrwtyakk9yb5YpLnb8Sc62G5vZhYd2OSSrJpfyRvyF4kec34a+Nkkk+s94zrZcDvkecluSvJPePfJzdsxJxrLclHkzx4rvcqZeRD4326N8mLBj1xVa3ZL0bf5P1P4JeAi4FvALsXrfk94MPjj/cDn1rLmTbq18C9eAXws+OP39R5L8brLgG+DBwHZjZ67g38utgF3AP8/Pj4ORs99wbuxWHgTeOPdwPf3ui512gvXga8CPjmOe6/AfgCo/dAXQt8fcjzrvUrfC/LsGDZvaiqu6rqkfHhcUbvediMhnxdALwXeB/ww/Ucbp0N2Ys3Aoeq6iGAqnpwnWdcL0P2ooCfG398KU9+T9CmUFVf5vzvZdoHfKxGjgPPTvLc5Z53rYO/1GUZtp9rTVU9DjxxWYbNZsheTLqZ0Z/gm9Gye5HkamBnVX1+PQfbAEO+Lq4ArkjylSTHk+xZt+nW15C9eA9wU5J54Cjw5vUZ7YLzVHsCDLu0wmpM7bIMm8Dg/88kNwEzwMvXdKKNc969SPI0Rlddff16DbSBhnxdbGF0Wuc6Rn/r+5ckV1XVf6/xbOttyF4cAG6vqg8keQmj9/9cVVU/XvvxLigr6uZav8L3sgwLhuwFSV4FvBPYW1WPrtNs6225vbgEuAr4UpJvMzpHeWSTfuN26O+Rz1XVj6rqW8BpRn8AbDZD9uJm4E6Aqvoa8AxGF1brZlBPFlvr4HtZhgXL7sX4NMZHGMV+s56nhWX2oqoerqqtVXVZVV3G6PsZe6tqxReNuoAN+T3yWUbf0CfJVkaneM6s65TrY8hefAd4JUCSFzAK/tl1nfLCcAR43finda4FHq6q7y73oDU9pVNrd1mGnzoD9+L9wLOAT4+/b/2dqtq7YUOvkYF70cLAvTgGvDrJKeB/gXdU1fc3buq1MXAv3g78TZK3MjqF8frN+AIxyScZncLbOv5+xbuBpwNU1YcZff/iBmAOeAR4w6Dn3YR7JUlagu+0laQmDL4kNWHwJakJgy9JTRh8SWrC4GvTG19t8wMTx3+Y5D0bOJK0IQy+OngU+K3xm5aktgy+Onic0WV137r4jiTPH//bA0/8GwTPG99++/h6419NcibJjROPeUeSE+PH/Mn6/W9Iq2Pw1cUh4LVJLl10+18yuszsC4F/BD40cd9zgV8HfhP4M4Akr2Z0HZtrgF8FXpzkZWs8uzQVBl8tVNX/AB8D3rLorpcAT/wLUh9nFPgnfLaqflxVp4BfHN/26vGve4B/A65kc17ITJvQWl8eWbqQ/AWjSP/9edZMXmtk8mqlmfjvn1bVR6Y8m7TmfIWvNqrqB4wurXvzxM1fZeGCfa8F/nWZpzkG/G6SZwEk2Z7kOdOeVVoLBl/dfID/f/30twBvSHIv8NvAH5zvwVX1T4xOAX0tyX8w+mc5L1mjWaWp8mqZktSEr/AlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJv4PFsyxeorkq3kAAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<matplotlib.figure.Figure at 0x248b1dd0cc0>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "#optional_blue\n",
+    "y_pos = range(len(friends))\n",
+    "plt.bar(y_pos, friends)\n",
+    "plt.plot((0,25), (789,789), 'b-')\n",
+    "plt.plot((0,25), (789+425,789+425), 'g-')\n",
+    "plt.plot((0,25), (789-425,789-425), 'r-')\n",
+    "plt.xlabel(plt.show())"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAEB9JREFUeJzt3X+MZWV9x/H3p4A2UVK1OwouOy62+4c0bUEnq4amwfgLVuOqlQSaKJqaaQy0mtg/Vk2wMWlC/6g2FiJdhYCNgkZFtmFbBKRB00jYJSuwbIkrgTLuBlZoQKKtWfn2jznU6XBnZ3bO2XuXed6v5OaeHw/n+xzu7HzmOefcc1JVSJLa8xuT7oAkaTIMAElqlAEgSY0yACSpUQaAJDXKAJCkRvUOgCQbktyeZF+SvUk+OqLNOUmeTLKne13at64kqZ8TB9jGYeDjVXV3kpOB3Uluqar7F7X7XlW9c4B6kqQB9B4BVNXBqrq7m/4ZsA9Y33e7kqRja4gRwP9JshE4C7hzxOo3JvkhcAD4q6rau9z21q1bVxs3bhyyi5K0pu3evfunVTW1kraDBUCSFwPfBD5WVU8tWn038KqqejrJFuDbwKYltjMLzAJMT0+za9euobooSWtekodX2naQq4CSnMT8L/+vVNW3Fq+vqqeq6ulueidwUpJ1o7ZVVduraqaqZqamVhRikqRVGOIqoABXAfuq6rNLtDmla0eSzV3dx/vWliSt3hCHgM4G3g/cm2RPt+yTwDRAVV0JvA/4SJLDwC+AC8rbkErSRPUOgKr6PpBl2lwOXN63liRpOH4TWJIaZQBIUqMMAElqlAEgSY0a9JvAkjS0jdtuWlG7hy57xzHuydrjCECSGmUASFKjDABJapQBIEmNMgAkqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWrUEI+E3JDk9iT7kuxN8tERbZLk80n2J7knyWv71pUk9TPEzeAOAx+vqruTnAzsTnJLVd2/oM15wKbu9XrgC927JGlCeo8AqupgVd3dTf8M2AesX9RsK/DlmvcD4CVJTu1bW5K0eoOeA0iyETgLuHPRqvXAIwvm53huSEiSxmiw5wEkeTHwTeBjVfXU4tUj/pNaYjuzwCzA9PT0UN2Tnre8H76OlUFGAElOYv6X/1eq6lsjmswBGxbMnwYcGLWtqtpeVTNVNTM1NTVE9yRJIwxxFVCAq4B9VfXZJZrtAD7QXQ30BuDJqjrYt7YkafWGOAR0NvB+4N4ke7plnwSmAarqSmAnsAXYD/wc+NAAdSVJPfQOgKr6PqOP8S9sU8DFfWtJkobjN4ElqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWqUASBJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0a6pnAVyd5LMl9S6w/J8mTSfZ0r0uHqCtJWr0hHgkJcA1wOfDlI7T5XlW9c6B6kqSeBhkBVNUdwBNDbEuSNB7jPAfwxiQ/TPIvSX5vjHUlSSMMdQhoOXcDr6qqp5NsAb4NbBrVMMksMAswPT09pu5JUnvGMgKoqqeq6ulueidwUpJ1S7TdXlUzVTUzNTU1ju5JUpPGEgBJTkmSbnpzV/fxcdSWJI02yCGgJNcB5wDrkswBnwZOAqiqK4H3AR9Jchj4BXBBVdUQtSVJqzNIAFTVhcusv5z5y0QlSccJvwksSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNGtfdQCUdxzZuu2nFbR+67B3HsCcaJ0cAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVGDBECSq5M8luS+JdYnyeeT7E9yT5LXDlFXkrR6Q40ArgHOPcL684BN3WsW+MJAdSVJqzRIAFTVHcATR2iyFfhyzfsB8JIkpw5RW5K0OuM6B7AeeGTB/Fy3TJI0IeMKgIxYViMbJrNJdiXZdejQoWPcLUlq17gCYA7YsGD+NODAqIZVtb2qZqpqZmpqaiydk6QWjSsAdgAf6K4GegPwZFUdHFNtSdIIg9wNNMl1wDnAuiRzwKeBkwCq6kpgJ7AF2A/8HPjQEHUlSas3SABU1YXLrC/g4iFqSZKG4TeBJalRBoAkNcoAkKRGGQCS1CifCSxpbFb67GGfOzweBkAPPkhb0vOZh4AkqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWqUASBJjTIAJKlRBoAkNWqQAEhybpIHkuxPsm3E+g8mOZRkT/f68BB1JUmr1/teQElOAK4A3sr8w9/vSrKjqu5f1PRrVXVJ33qSpGEMcTO4zcD+qnoQIMn1wFZgcQAc97xToaSWDHEIaD3wyIL5uW7ZYn+S5J4k30iyYYC6kqQehgiAjFhWi+b/GdhYVX8A3Apcu+TGktkku5LsOnTo0ADdkySNMkQAzAEL/6I/DTiwsEFVPV5V/9PNfhF43VIbq6rtVTVTVTNTU1MDdE+SNMoQ5wDuAjYlOR34CXAB8KcLGyQ5taoOdrPvAvYNUFdakudzpOX1DoCqOpzkEuBm4ATg6qram+QzwK6q2gH8ZZJ3AYeBJ4AP9q0rSepnkEdCVtVOYOeiZZcumP4E8IkhakmShuEzgdcoD4FIWo4BoFVbacjAr4PGYJKOH94LSJIaZQBIUqMMAElqlAEgSY3yJLCkNceLDVbGEYAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDVqkABIcm6SB5LsT7JtxPoXJvlat/7OJBuHqCtJWr3eAZDkBOAK4DzgDODCJGcsavZnwH9V1e8CnwP+tm9dSVI/Q4wANgP7q+rBqvolcD2wdVGbrcC13fQ3gDcnyQC1JUmrNMTN4NYDjyyYnwNev1Sb7iHyTwK/Dfx0gPpa47yxl3RspKr6bSA5H3h7VX24m38/sLmq/mJBm71dm7lu/sddm8dHbG8WmAWYnp5+3cMPP7yqfh2vvzRW069x7cvx+v9sHMb1eMu19FmupZ+XtfT5J9ldVTMraTvEIaA5YMOC+dOAA0u1SXIi8FvAE6M2VlXbq2qmqmampqYG6J4kaZQhAuAuYFOS05O8ALgA2LGozQ7gom76fcB3q+/QQ5LUS+9zAN0x/UuAm4ETgKuram+SzwC7qmoHcBXwT0n2M/+X/wV960qS+hnkiWBVtRPYuWjZpQum/xs4f4hakqRh+EhISVqF58PJ7eV4KwhJapQjAGmM1sJfjVo7HAFIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmN8l5AzwPeP0ZaG463f8uOACSpUb0CIMnLktyS5Efd+0uXaPerJHu61+LHRUqSJqDvCGAbcFtVbQJu6+ZH+UVVndm93tWzpiRpAH0DYCtwbTd9LfDuntuTJI1J3wB4RVUdBOjeX75Eu99MsivJD5IYEpJ0HFj2KqAktwKnjFj1qaOoM11VB5K8Gvhuknur6sdL1JsFZgGmp6ePooQk6WgsGwBV9Zal1iV5NMmpVXUwyanAY0ts40D3/mCSfwPOAkYGQFVtB7YDzMzM1LJ7IElalb6HgHYAF3XTFwE3Lm6Q5KVJXthNrwPOBu7vWVeS1FPfALgMeGuSHwFv7eZJMpPkS12b1wC7kvwQuB24rKoMAEmasF7fBK6qx4E3j1i+C/hwN/3vwO/3qSNJGp63gpDUvOPtFg3j4q0gJKlRBoAkNcoAkKRGGQCS1ChPAktrUKsnNXV0HAFIUqMcAUhaFUcZz3+OACSpUY4ApFXyL2A93zkCkKRGGQCS1CgDQJIa5TmAMfO4saTjhSMASWqUASBJjeoVAEnOT7I3yTNJZo7Q7twkDyTZn2Rbn5qSpGH0HQHcB7wXuGOpBklOAK4AzgPOAC5MckbPupKknvo+EnIfQJIjNdsM7K+qB7u21wNb8cHwkjRR4zgHsB54ZMH8XLdMkjRBy44AktwKnDJi1aeq6sYV1Bg1PKgj1JsFZgGmp6dXsHlJ0mosGwBV9ZaeNeaADQvmTwMOHKHedmA7wMzMzJJBIUnqZxyHgO4CNiU5PckLgAuAHWOoK0k6gr6Xgb4nyRzwRuCmJDd3y1+ZZCdAVR0GLgFuBvYBX6+qvf26LUnqq+9VQDcAN4xYfgDYsmB+J7CzTy1J0rD8JrAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVF9nwh2fpK9SZ5JMnOEdg8luTfJniS7+tSUJA2j1xPBgPuA9wL/uIK2b6qqn/asJ0kaSN9HQu4DSDJMbyRJYzOucwAFfCfJ7iSzY6opSTqCZUcASW4FThmx6lNVdeMK65xdVQeSvBy4Jcl/VNUdS9SbBWYBpqenV7h5SdLRWjYAquotfYtU1YHu/bEkNwCbgZEBUFXbge0AMzMz1be2JGm0Y34IKMmLkpz87DTwNuZPHkuSJqjXSeAk7wH+AZgCbkqyp6renuSVwJeqagvwCuCG7kTxicBXq+pfe/ZbGtRDl71j0l2Qxq7vVUA3ADeMWH4A2NJNPwj8YZ86kqTh9f0ewHHLv+gk6ci8FYQkNWrNjgB09Bw1SW1xBCBJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY1K1fF7y/0kh4CHB9zkOqDl5xK7/+6/+7/2vaqqplbS8LgOgKEl2VVVM5Pux6S4/+6/+9/u/o/iISBJapQBIEmNai0Atk+6AxPm/rfN/df/09Q5AEnSr7U2ApAkdZoIgCTnJnkgyf4k2ybdn3FL8lCSe5PsSbJr0v0ZhyRXJ3ksyX0Llr0syS1JftS9v3SSfTxWltj3v07yk+5nYE+SLZPs47GUZEOS25PsS7I3yUe75U18/kdjzQdAkhOAK4DzgDOAC5OcMdleTcSbqurMhi6DuwY4d9GybcBtVbUJuK2bX4uu4bn7DvC57mfgzKraOeY+jdNh4ONV9RrgDcDF3b/5Vj7/FVvzAQBsBvZX1YNV9UvgemDrhPukY6yq7gCeWLR4K3BtN30t8O6xdmpMltj3ZlTVwaq6u5v+GbAPWE8jn//RaCEA1gOPLJif65a1pIDvJNmdZHbSnZmgV1TVQZj/JQG8fML9GbdLktzTHSJq4vBHko3AWcCd+Pk/RwsBkBHLWrv06eyqei3zh8EuTvLHk+6Qxu4LwO8AZwIHgb+bbHeOvSQvBr4JfKyqnpp0f45HLQTAHLBhwfxpwIEJ9WUiqupA9/4YcAPzh8Va9GiSUwG698cm3J+xqapHq+pXVfUM8EXW+M9AkpOY/+X/lar6Vre42c9/KS0EwF3ApiSnJ3kBcAGwY8J9GpskL0py8rPTwNuA+478X61ZO4CLuumLgBsn2JexevYXX+c9rOGfgSQBrgL2VdVnF6xq9vNfShNfBOsueft74ATg6qr6mwl3aWySvJr5v/oBTgS+2sL+J7kOOIf5O0A+Cnwa+DbwdWAa+E/g/KpacydLl9j3c5g//FPAQ8CfP3s8fK1J8kfA94B7gWe6xZ9k/jzAmv/8j0YTASBJeq4WDgFJkkYwACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJatT/AieUj5Gq0/4vAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<matplotlib.figure.Figure at 0x248b1e7fa58>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "z_scores = []\n",
+    "m = np.mean(friends)\n",
+    "s = np.std(friends)\n",
+    "for friend in friends:\n",
+    "    z = (friend - m)/s\n",
+    "    z_scores.append(z)\n",
+    "plt.bar(y_pos, z_scores)\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAEU9JREFUeJzt3X2MZmV9xvHvVV5sorS+7Cq47LjY7h+lb2AniKFpaAQLaFy10kATBVMzjZFUEpt01QSNSRNaW0ssRroKERsVjYpsw1YEhaBpICxkBZYtdbvBMu7KIjQg0dYgv/4xj2Ucnnk953lmdu7vJ5nMebk5v/vMYeea+5zznJOqQpLUnl9a7Q5IklaHASBJjTIAJKlRBoAkNcoAkKRGGQCS1KjOAZBkc5Jbk+xLsjfJe4a0OTPJE0n2DL4u61pXktTN0T1s42ngvVV1T5LjgLuT3FxVD8xp962qekMP9SRJPeg8AqiqQ1V1z2D6R8A+YFPX7UqSRquPEcD/S7IFOBW4c8jq1yT5DnAQ+Muq2rvY9jZs2FBbtmzps4uStK7dfffdP6yqjUtp21sAJHkB8GXg0qp6cs7qe4BXVNVTSc4DvgpsnWc7U8AUwMTEBLt37+6ri5K07iX53lLb9nIXUJJjmPnl/9mq+src9VX1ZFU9NZjeBRyTZMOwbVXVjqqarKrJjRuXFGKSpBXo4y6gAFcD+6rqo/O0OX7QjiSnDeo+1rW2JGnl+jgFdAbwNuC+JHsGy94PTABU1VXAW4F3JXka+AlwQfkYUklaVZ0DoKq+DWSRNlcCV3atJUnqj58ElqRGGQCS1CgDQJIaZQBIUqN6/SSwJM21ZfuNS2r30OWvH3FPNJcjAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVF9vBJyc5Jbk+xLsjfJe4a0SZKPJdmf5N4kr+paV5LUTR8Pg3saeG9V3ZPkOODuJDdX1QOz2pwLbB18vRr4xOC7JGmVdB4BVNWhqrpnMP0jYB+waU6zbcBnasYdwAuTnNC1tiRp5Xq9BpBkC3AqcOecVZuAh2fNT/PckJAkjVFv7wNI8gLgy8ClVfXk3NVD/pOaZztTwBTAxMREX92T1pSlPCPf5+Nr1HoZASQ5hplf/p+tqq8MaTINbJ41fyJwcNi2qmpHVU1W1eTGjRv76J4kaYg+7gIKcDWwr6o+Ok+zncDbB3cDnQ48UVWHutaWJK1cH6eAzgDeBtyXZM9g2fuBCYCqugrYBZwH7Ad+DLyjh7qSpA46B0BVfZvh5/hntyng3V1rSZL64yeBJalRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmN6uudwNckOZzk/nnWn5nkiSR7Bl+X9VFXkrRyfbwSEuDTwJXAZxZo862qekNP9SRJHfUyAqiq24HH+9iWJGk8xnkN4DVJvpPkX5P85hjrSpKG6OsU0GLuAV5RVU8lOQ/4KrB1WMMkU8AUwMTExJi6J0ntGcsIoKqerKqnBtO7gGOSbJin7Y6qmqyqyY0bN46je5LUpLEEQJLjk2Qwfdqg7mPjqC1JGq6XU0BJPg+cCWxIMg18EDgGoKquAt4KvCvJ08BPgAuqqvqoLUlamV4CoKouXGT9lczcJipJWiP8JLAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDVqXE8DlTRGW7bfuGibhy5//Rh6orXMEYAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqVC8BkOSaJIeT3D/P+iT5WJL9Se5N8qo+6kqSVq6vEcCngXMWWH8usHXwNQV8oqe6kqQV6iUAqup24PEFmmwDPlMz7gBemOSEPmpLklZmXJ8E3gQ8PGt+erDs0Jjqc+nXLmXPD/aMq5y0oB8c+9iibc789EfW7PaXYyl9gfH150hwyvGncMU5V4y8zrguAmfIshraMJlKsjvJ7kcffXTE3ZKkdo1rBDANbJ41fyJwcFjDqtoB7ACYnJwcGhIrMY40lZZqKc/que3ilT+rZ9TbX46l9AXG1x89a1wjgJ3A2wd3A50OPFFVYzv9I0l6rl5GAEk+D5wJbEgyDXwQOAagqq4CdgHnAfuBHwPv6KOuJGnlegmAqrpwkfUFvLuPWpKkfvhJYElqlAEgSY0yACSpUQaAJDXKdwJLWpal3tfvO4fXPgNghXzptqQjnaeAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDWqlwBIck6SB5PsT7J9yPqLkzyaZM/g65191JUkrVznZwElOQr4OHA2My9/vyvJzqp6YE7TL1TVJV3rSZL60cfD4E4D9lfVAYAk1wHbgLkBsKb5cDdJrenjFNAm4OFZ89ODZXP9cZJ7k3wpyeYe6kqSOugjADJkWc2Z/xdgS1X9DnALcO28G0umkuxOsvvRRx/toXuSpGH6CIBpYPZf9CcCB2c3qKrHqup/B7OfBH5vvo1V1Y6qmqyqyY0bN/bQPUnSMH1cA7gL2JrkJOD7wAXAn85ukOSEqjo0mH0jsK+HumqY12yk7joHQFU9neQS4CbgKOCaqtqb5MPA7qraCfxFkjcCTwOPAxd3rStJ6qaXV0JW1S5g15xll82afh/wvj5qSZL64TuB1wlPiUhaLgNAS7LcgDGQpLXPZwFJUqMMAElqlAEgSY0yACSpUV4ElrSmLOUGAvAmgj44ApCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVEGgCQ1ygCQpEb1EgBJzknyYJL9SbYPWf+8JF8YrL8zyZY+6kqSVq5zACQ5Cvg4cC5wMnBhkpPnNPsz4L+r6teBfwD+pmtdSVI3fYwATgP2V9WBqvopcB2wbU6bbcC1g+kvAa9Nkh5qS5JWqI+HwW0CHp41Pw28er42g5fIPwG8BPhhD/WX5NJLYc+e+df/4MDpi27jzDtW3n7URt2fUf987jjw2KLtT3/lS1a8/bVmrR2vvrc9e/ujbr8enXIKXHHF6Ov0EQDD/pKvFbSZaZhMAVMAExMTK+7U3CcKPv7tk/np4V/5hWWzf6HMnl6K5bZf7i+45bYfdX9G/fM50n/+R/rxWs72j8RjO3u7o25/JOkjAKaBzbPmTwQOztNmOsnRwK8Cjw/bWFXtAHYATE5ODg2JlXjxWQ88Z9ltY3yc7Jbti/+5ctsvvFN3ee1H3Z8j3ah//kf68TqS/39YSt/h2f6Puv2RpI9rAHcBW5OclORY4AJg55w2O4GLBtNvBb5ZVb39cpckLV/nEcDgnP4lwE3AUcA1VbU3yYeB3VW1E7ga+Ock+5n5y/+CrnUlSd308kawqtoF7Jqz7LJZ0/8DnN9HLUlSP3wlpKSm+CrJZ/koCElqlCMAqQf+VakjkSMASWqUASBJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUT4LaI3y2TLS2rCe/y06ApCkRnUKgCQvTnJzku8Ovr9onnY/S7Jn8DX3dZGSpFXQdQSwHfhGVW0FvjGYH+YnVXXK4OuNHWtKknrQNQC2AdcOpq8F3tRxe5KkMekaAC+rqkMAg+8vnafdLyfZneSOJIaEJK0Bi94FlOQW4Pghqz6wjDoTVXUwySuBbya5r6r+c556U8AUwMTExDJKSJKWY9EAqKqz5luX5JEkJ1TVoSQnAIfn2cbBwfcDSW4DTgWGBkBV7QB2AExOTtaieyBJWpGup4B2AhcNpi8CbpjbIMmLkjxvML0BOAN4oGNdSVJHXQPgcuDsJN8Fzh7Mk2QyyacGbX4D2J3kO8CtwOVVZQBI0irr9EngqnoMeO2Q5buBdw6m/w347S51JEn981EQko5o6/lRDaPmoyAkqVEGgCQ1ygCQpEYZAJLUKC8CS0cAL3RqFBwBSFKjHAFIcoTRKEcAktQoRwDSEP5FrBY4ApCkRhkAktQoA0CSGuU1gDHxnLKktcYRgCQ1ygCQpEZ1CoAk5yfZm+SZJJMLtDsnyYNJ9ifZ3qWmJKkfXUcA9wNvAW6fr0GSo4CPA+cCJwMXJjm5Y11JUkddXwm5DyDJQs1OA/ZX1YFB2+uAbfhieElaVeO4C2gT8PCs+Wng1WOo+wsuu2UHJx8+8IsL7/jIuLuxZlx34LHFG62jn09r+6sj3CmnwBVXjLzMogGQ5Bbg+CGrPlBVNyyhxrDhQS1QbwqYApiYmFjC5iVJK7FoAFTVWR1rTAObZ82fCBxcoN4OYAfA5OTkvEGxXB8+a+o5y1q+N/+C7Tcu2mY9/Xxa219pKcZxG+hdwNYkJyU5FrgA2DmGupKkBXS9DfTNSaaB1wA3JrlpsPzlSXYBVNXTwCXATcA+4ItVtbdbtyVJXXW9C+h64Pohyw8C582a3wXs6lJLktQvPwksSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWpU1zeCnZ9kb5Jnkkwu0O6hJPcl2ZNkd5eakqR+dHojGHA/8Bbgn5bQ9g+r6ocd60mSetL1lZD7AJL00xtJ0tiM6xpAAV9PcneSqTHVlCQtYNERQJJbgOOHrPpAVd2wxDpnVNXBJC8Fbk7y71V1+zz1poApgImJiSVuXpK0XIsGQFWd1bVIVR0cfD+c5HrgNGBoAFTVDmAHwOTkZHWtLUkabuSngJI8P8lxP58GXsfMxWNJ0irqdBE4yZuBfwQ2Ajcm2VNVf5Tk5cCnquo84GXA9YMLxUcDn6uqr3Xst7QsD13++tXugrTmdL0L6Hrg+iHLDwLnDaYPAL/bpY4kqX9dPwewZvkXnyQtzEdBSFKj1u0IQAtzhCTJEYAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDUqVWv3kftJHgW+1+MmNwAtvZe4pf1taV/B/V3vuuzvK6pq41IarukA6FuS3VU1udr9GJeW9relfQX3d70b1/56CkiSGmUASFKjWguAHavdgTFraX9b2ldwf9e7sexvU9cAJEnPam0EIEkaaCIAkpyT5MEk+5NsX+3+jFqSh5Lcl2RPkt2r3Z++JbkmyeEk989a9uIkNyf57uD7i1azj32aZ38/lOT7g2O8J8l5q9nHPiXZnOTWJPuS7E3ynsHydXmMF9jfkR/jdX8KKMlRwH8AZwPTwF3AhVX1wKp2bISSPARMVtW6vG86yR8ATwGfqarfGiz7W+Dxqrp8EPIvqqq/Ws1+9mWe/f0Q8FRV/d1q9m0UkpwAnFBV9yQ5DrgbeBNwMevwGC+wv3/CiI9xCyOA04D9VXWgqn4KXAdsW+U+qYOquh14fM7ibcC1g+lrmfkHtC7Ms7/rVlUdqqp7BtM/AvYBm1inx3iB/R25FgJgE/DwrPlpxvTDXUUFfD3J3UmmVrszY/KyqjoEM/+ggJeucn/G4ZIk9w5OEa2L0yFzJdkCnArcSQPHeM7+woiPcQsBkCHL1vd5Lzijql4FnAu8e3AKQevLJ4BfA04BDgF/v7rd6V+SFwBfBi6tqidXuz+jNmR/R36MWwiAaWDzrPkTgYOr1JexqKqDg++HgeuZOQ223j0yOJf683Oqh1e5PyNVVY9U1c+q6hngk6yzY5zkGGZ+GX62qr4yWLxuj/Gw/R3HMW4hAO4CtiY5KcmxwAXAzlXu08gkef7gQhJJng+8Drh/4f9qXdgJXDSYvgi4YRX7MnI//0U48GbW0TFOEuBqYF9VfXTWqnV5jOfb33Ec43V/FxDA4PapK4CjgGuq6q9XuUsjk+SVzPzVD3A08Ln1tr9JPg+cycwTEx8BPgh8FfgiMAH8F3B+Va2LC6fz7O+ZzJwaKOAh4M9/fn78SJfk94FvAfcBzwwWv5+Z8+Lr7hgvsL8XMuJj3EQASJKeq4VTQJKkIQwASWqUASBJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIa9X+gQk7CmU6YZgAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<matplotlib.figure.Figure at 0x248b1efd048>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plt.bar(y_pos, z_scores)\n",
+    "plt.plot((0,25), (1,1), 'g-')\n",
+    "plt.plot((0,25), (0,0), 'b-')\n",
+    "plt.plot((0,25), (-1,-1), 'r-')\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "[109,\n",
+       " 1017,\n",
+       " 1127,\n",
+       " 418,\n",
+       " 625,\n",
+       " 957,\n",
+       " 89,\n",
+       " 950,\n",
+       " 946,\n",
+       " 797,\n",
+       " 981,\n",
+       " 125,\n",
+       " 455,\n",
+       " 731,\n",
+       " 1640,\n",
+       " 485,\n",
+       " 1309,\n",
+       " 472,\n",
+       " 1132,\n",
+       " 1773,\n",
+       " 906,\n",
+       " 531,\n",
+       " 742,\n",
+       " 621]"
+      ]
+     },
+     "execution_count": 14,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "friends = [109, 1017, 1127, 418, 625, 957,89,950,946,797,981,\n",
+    "          125, 455, 731, 1640, 485, 1309, 472, 1132, 1773, 906, 531, 742, 621]\n",
+    "friends"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.4"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/lab_dsa_2/lab2_arief.ipynb b/lab_dsa_2/lab2_arief.ipynb
index ed467f40b7c17db6dcc2ce041b7626d6190ea143..a0b40a6651a736d0b0d217fa0dd3fb013511c1e5 100644
--- a/lab_dsa_2/lab2_arief.ipynb
+++ b/lab_dsa_2/lab2_arief.ipynb
@@ -2,7 +2,7 @@
  "cells": [
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": 2,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -17,7 +17,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 5,
+   "execution_count": 3,
    "metadata": {
     "scrolled": true
    },
@@ -28,7 +28,7 @@
        "43.002372"
       ]
      },
-     "execution_count": 5,
+     "execution_count": 3,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -44,7 +44,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 6,
+   "execution_count": 4,
    "metadata": {},
    "outputs": [
     {
@@ -60,7 +60,7 @@
        "0.614372000000003"
       ]
      },
-     "execution_count": 6,
+     "execution_count": 4,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -74,16 +74,16 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
+   "execution_count": 5,
    "metadata": {},
    "outputs": [
     {
      "data": {
       "text/plain": [
-       "[4, 3, 0, 5, 7]"
+       "[7, 1, 14, 3, 12]"
       ]
      },
-     "execution_count": 7,
+     "execution_count": 5,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -96,42 +96,78 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 10,
+   "execution_count": 6,
    "metadata": {
     "scrolled": true
    },
    "outputs": [
     {
-     "ename": "URLError",
-     "evalue": "<urlopen error [WinError 10060] A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond>",
-     "output_type": "error",
-     "traceback": [
-      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
-      "\u001b[1;31mTimeoutError\u001b[0m                              Traceback (most recent call last)",
-      "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\urllib\\request.py\u001b[0m in \u001b[0;36mdo_open\u001b[1;34m(self, http_class, req, **http_conn_args)\u001b[0m\n\u001b[0;32m   1317\u001b[0m                 h.request(req.get_method(), req.selector, req.data, headers,\n\u001b[1;32m-> 1318\u001b[1;33m                           encode_chunked=req.has_header('Transfer-encoding'))\n\u001b[0m\u001b[0;32m   1319\u001b[0m             \u001b[1;32mexcept\u001b[0m \u001b[0mOSError\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[1;33m:\u001b[0m \u001b[1;31m# timeout error\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\http\\client.py\u001b[0m in \u001b[0;36mrequest\u001b[1;34m(self, method, url, body, headers, encode_chunked)\u001b[0m\n\u001b[0;32m   1238\u001b[0m         \u001b[1;34m\"\"\"Send a complete request to the server.\"\"\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1239\u001b[1;33m         \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_send_request\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmethod\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0murl\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbody\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mheaders\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mencode_chunked\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m   1240\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\http\\client.py\u001b[0m in \u001b[0;36m_send_request\u001b[1;34m(self, method, url, body, headers, encode_chunked)\u001b[0m\n\u001b[0;32m   1284\u001b[0m             \u001b[0mbody\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0m_encode\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mbody\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'body'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1285\u001b[1;33m         \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mendheaders\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mbody\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mencode_chunked\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mencode_chunked\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m   1286\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\http\\client.py\u001b[0m in \u001b[0;36mendheaders\u001b[1;34m(self, message_body, encode_chunked)\u001b[0m\n\u001b[0;32m   1233\u001b[0m             \u001b[1;32mraise\u001b[0m \u001b[0mCannotSendHeader\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1234\u001b[1;33m         \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_send_output\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmessage_body\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mencode_chunked\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mencode_chunked\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m   1235\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\http\\client.py\u001b[0m in \u001b[0;36m_send_output\u001b[1;34m(self, message_body, encode_chunked)\u001b[0m\n\u001b[0;32m   1025\u001b[0m         \u001b[1;32mdel\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_buffer\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1026\u001b[1;33m         \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msend\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmsg\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m   1027\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\http\\client.py\u001b[0m in \u001b[0;36msend\u001b[1;34m(self, data)\u001b[0m\n\u001b[0;32m    963\u001b[0m             \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mauto_open\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 964\u001b[1;33m                 \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mconnect\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    965\u001b[0m             \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\http\\client.py\u001b[0m in \u001b[0;36mconnect\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m    935\u001b[0m         self.sock = self._create_connection(\n\u001b[1;32m--> 936\u001b[1;33m             (self.host,self.port), self.timeout, self.source_address)\n\u001b[0m\u001b[0;32m    937\u001b[0m         \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msock\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msetsockopt\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msocket\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mIPPROTO_TCP\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msocket\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mTCP_NODELAY\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\socket.py\u001b[0m in \u001b[0;36mcreate_connection\u001b[1;34m(address, timeout, source_address)\u001b[0m\n\u001b[0;32m    723\u001b[0m     \u001b[1;32mif\u001b[0m \u001b[0merr\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 724\u001b[1;33m         \u001b[1;32mraise\u001b[0m \u001b[0merr\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    725\u001b[0m     \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\socket.py\u001b[0m in \u001b[0;36mcreate_connection\u001b[1;34m(address, timeout, source_address)\u001b[0m\n\u001b[0;32m    712\u001b[0m                 \u001b[0msock\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mbind\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msource_address\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 713\u001b[1;33m             \u001b[0msock\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mconnect\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msa\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    714\u001b[0m             \u001b[1;31m# Break explicitly a reference cycle\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;31mTimeoutError\u001b[0m: [WinError 10060] A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond",
-      "\nDuring handling of the above exception, another exception occurred:\n",
-      "\u001b[1;31mURLError\u001b[0m                                  Traceback (most recent call last)",
-      "\u001b[1;32m<ipython-input-10-0d34d4396123>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m      1\u001b[0m \u001b[0mlink\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m'http://bit.ly/uforeports'\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mufo\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mread_csv\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mlink\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m      3\u001b[0m \u001b[0mufo\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msample\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mn\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m3\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\pandas\\io\\parsers.py\u001b[0m in \u001b[0;36mparser_f\u001b[1;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, escapechar, comment, encoding, dialect, tupleize_cols, error_bad_lines, warn_bad_lines, skipfooter, skip_footer, doublequote, delim_whitespace, as_recarray, compact_ints, use_unsigned, low_memory, buffer_lines, memory_map, float_precision)\u001b[0m\n\u001b[0;32m    707\u001b[0m                     skip_blank_lines=skip_blank_lines)\n\u001b[0;32m    708\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 709\u001b[1;33m         \u001b[1;32mreturn\u001b[0m \u001b[0m_read\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkwds\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    710\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    711\u001b[0m     \u001b[0mparser_f\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__name__\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mname\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\pandas\\io\\parsers.py\u001b[0m in \u001b[0;36m_read\u001b[1;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[0;32m    431\u001b[0m     \u001b[0mcompression\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0m_infer_compression\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcompression\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    432\u001b[0m     filepath_or_buffer, _, compression = get_filepath_or_buffer(\n\u001b[1;32m--> 433\u001b[1;33m         filepath_or_buffer, encoding, compression)\n\u001b[0m\u001b[0;32m    434\u001b[0m     \u001b[0mkwds\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'compression'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcompression\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    435\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\pandas\\io\\common.py\u001b[0m in \u001b[0;36mget_filepath_or_buffer\u001b[1;34m(filepath_or_buffer, encoding, compression)\u001b[0m\n\u001b[0;32m    188\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    189\u001b[0m     \u001b[1;32mif\u001b[0m \u001b[0m_is_url\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 190\u001b[1;33m         \u001b[0mreq\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0m_urlopen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    191\u001b[0m         \u001b[0mcontent_encoding\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mreq\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mheaders\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'Content-Encoding'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    192\u001b[0m         \u001b[1;32mif\u001b[0m \u001b[0mcontent_encoding\u001b[0m \u001b[1;33m==\u001b[0m \u001b[1;34m'gzip'\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\urllib\\request.py\u001b[0m in \u001b[0;36murlopen\u001b[1;34m(url, data, timeout, cafile, capath, cadefault, context)\u001b[0m\n\u001b[0;32m    221\u001b[0m     \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    222\u001b[0m         \u001b[0mopener\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0m_opener\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 223\u001b[1;33m     \u001b[1;32mreturn\u001b[0m \u001b[0mopener\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0murl\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtimeout\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    224\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    225\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0minstall_opener\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mopener\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\urllib\\request.py\u001b[0m in \u001b[0;36mopen\u001b[1;34m(self, fullurl, data, timeout)\u001b[0m\n\u001b[0;32m    524\u001b[0m             \u001b[0mreq\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmeth\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mreq\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    525\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 526\u001b[1;33m         \u001b[0mresponse\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_open\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mreq\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    527\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    528\u001b[0m         \u001b[1;31m# post-process response\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\urllib\\request.py\u001b[0m in \u001b[0;36m_open\u001b[1;34m(self, req, data)\u001b[0m\n\u001b[0;32m    542\u001b[0m         \u001b[0mprotocol\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mreq\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtype\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    543\u001b[0m         result = self._call_chain(self.handle_open, protocol, protocol +\n\u001b[1;32m--> 544\u001b[1;33m                                   '_open', req)\n\u001b[0m\u001b[0;32m    545\u001b[0m         \u001b[1;32mif\u001b[0m \u001b[0mresult\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    546\u001b[0m             \u001b[1;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\urllib\\request.py\u001b[0m in \u001b[0;36m_call_chain\u001b[1;34m(self, chain, kind, meth_name, *args)\u001b[0m\n\u001b[0;32m    502\u001b[0m         \u001b[1;32mfor\u001b[0m \u001b[0mhandler\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mhandlers\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    503\u001b[0m             \u001b[0mfunc\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mhandler\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmeth_name\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 504\u001b[1;33m             \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mfunc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    505\u001b[0m             \u001b[1;32mif\u001b[0m \u001b[0mresult\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    506\u001b[0m                 \u001b[1;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\urllib\\request.py\u001b[0m in \u001b[0;36mhttp_open\u001b[1;34m(self, req)\u001b[0m\n\u001b[0;32m   1344\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1345\u001b[0m     \u001b[1;32mdef\u001b[0m \u001b[0mhttp_open\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mreq\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1346\u001b[1;33m         \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdo_open\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mhttp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mclient\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mHTTPConnection\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mreq\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m   1347\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1348\u001b[0m     \u001b[0mhttp_request\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mAbstractHTTPHandler\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdo_request_\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\urllib\\request.py\u001b[0m in \u001b[0;36mdo_open\u001b[1;34m(self, http_class, req, **http_conn_args)\u001b[0m\n\u001b[0;32m   1318\u001b[0m                           encode_chunked=req.has_header('Transfer-encoding'))\n\u001b[0;32m   1319\u001b[0m             \u001b[1;32mexcept\u001b[0m \u001b[0mOSError\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[1;33m:\u001b[0m \u001b[1;31m# timeout error\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1320\u001b[1;33m                 \u001b[1;32mraise\u001b[0m \u001b[0mURLError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0merr\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m   1321\u001b[0m             \u001b[0mr\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mh\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mgetresponse\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1322\u001b[0m         \u001b[1;32mexcept\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;31mURLError\u001b[0m: <urlopen error [WinError 10060] A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond>"
-     ]
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>City</th>\n",
+       "      <th>Colors Reported</th>\n",
+       "      <th>Shape Reported</th>\n",
+       "      <th>State</th>\n",
+       "      <th>Time</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>833</th>\n",
+       "      <td>Oklahoma City</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>LIGHT</td>\n",
+       "      <td>OK</td>\n",
+       "      <td>7/15/1963 22:00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>15130</th>\n",
+       "      <td>Lowell</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>RECTANGLE</td>\n",
+       "      <td>IN</td>\n",
+       "      <td>11/16/1999 18:00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>8081</th>\n",
+       "      <td>Lebanon</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>OR</td>\n",
+       "      <td>5/6/1995 23:30</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "                City Colors Reported Shape Reported State              Time\n",
+       "833    Oklahoma City             NaN          LIGHT    OK   7/15/1963 22:00\n",
+       "15130         Lowell             NaN      RECTANGLE    IN  11/16/1999 18:00\n",
+       "8081         Lebanon             NaN            NaN    OR    5/6/1995 23:30"
+      ]
+     },
+     "execution_count": 6,
+     "metadata": {},
+     "output_type": "execute_result"
     }
    ],
    "source": [
@@ -142,7 +178,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 11,
+   "execution_count": 7,
    "metadata": {},
    "outputs": [
     {
@@ -161,7 +197,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 12,
+   "execution_count": 8,
    "metadata": {},
    "outputs": [
     {
@@ -180,7 +216,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 13,
+   "execution_count": 9,
    "metadata": {},
    "outputs": [
     {
@@ -202,7 +238,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 14,
+   "execution_count": 10,
    "metadata": {},
    "outputs": [
     {
@@ -225,14 +261,14 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 15,
+   "execution_count": 11,
    "metadata": {},
    "outputs": [
     {
      "data": {
       "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD8CAYAAACRkhiPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAEq9JREFUeJzt3X+MXWd95/H3p6GgLgURyEBdO+kkyCAF1B1glI3EglLRQhJWDVSC2qog/NgaqmTbaPcPElbaoFapopaUFLVNZYqVRIKEaNM0VnGBgErTSgQyTt3EIQSc4JLBxp4mK5qKKquY7/5xz6wvzvy8P2bG87xf0uje+73POec5Psl85jzn3OemqpAktemn1rsDkqT1YwhIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGva89e7Acs4666yanJxc725I0mlj//79/1JVEytpu+FDYHJykpmZmfXuhiSdNpL880rbOhwkSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJatiyIZBkT5LjSQ721T6X5ED3czjJga4+meTf+977875l3pDkoSSHknwyScazS5KklVrJJ4ZvBv4EuHW+UFW/Pv88yQ3AD/vaP1ZVUwus5yZgF3AfsA+4GPib1XdZ0ulm8urPr6jd4evfPuae6FTLnglU1b3AUwu91/01/27gtqXWkWQL8OKq+lpVFb1AecfquytJGqVhrwm8CThWVd/pq52b5B+T/F2SN3W1rcBsX5vZrragJLuSzCSZmZubG7KLkqTFDBsCO/nJs4CjwDlV9TrgvwOfTfJiYKHx/1pspVW1u6qmq2p6YmJFE+FJkgYw8CyiSZ4H/BrwhvlaVT0DPNM935/kMeBV9P7y39a3+DbgyKDbliSNxjBnAr8MfKuq/v8wT5KJJGd0z88DtgOPV9VR4OkkF3bXEd4L3D3EtiVJI7CSW0RvA74GvDrJbJIPdm/t4LkXhN8MPJjkn4D/DXy4quYvKv8W8BfAIeAxvDNIktbdssNBVbVzkfr7FqjdCdy5SPsZ4LWr7J8kaYz8xLAkNcwQkKSGGQKS1DBDQJIaZghIUsMMAUlqmCEgSQ0beNoIScNZyfTKTq2scfNMQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJapghIEkNWzYEkuxJcjzJwb7ax5J8P8mB7ufSvveuSXIoyaNJ3tZXv7irHUpy9eh3RZK0Wis5E7gZuHiB+ieqaqr72QeQ5HxgB/Cabpk/S3JGkjOAPwUuAc4HdnZtJUnraNmppKvq3iSTK1zfZcDtVfUM8N0kh4ALuvcOVdXjAElu79p+c9U9liSNzDDXBK5M8mA3XHRmV9sKPNHXZrarLVaXJK2jQUPgJuCVwBRwFLihq2eBtrVEfUFJdiWZSTIzNzc3YBclScsZKASq6lhVnaiqHwOf4uSQzyxwdl/TbcCRJeqLrX93VU1X1fTExMQgXZQkrcBAIZBkS9/LdwLzdw7tBXYkeUGSc4HtwDeA+4HtSc5N8nx6F4/3Dt5tSdIoLHthOMltwEXAWUlmgWuBi5JM0RvSOQx8CKCqHk5yB70Lvs8CV1TViW49VwJfBM4A9lTVwyPfG0nSqqzk7qCdC5Q/vUT764DrFqjvA/atqneSpLHyE8OS1DBDQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJapghIEkNMwQkqWGGgCQ1zBCQpIYZApLUsGW/WUzS6Wny6s8v2+bw9W9fg55oI/NMQJIaZghIUsOWDYEke5IcT3Kwr/aHSb6V5MEkdyV5SVefTPLvSQ50P3/et8wbkjyU5FCSTybJeHZJkrRSKzkTuBm4+JTaPcBrq+oXgW8D1/S991hVTXU/H+6r3wTsArZ3P6euU5K0xpYNgaq6F3jqlNqXqurZ7uV9wLal1pFkC/DiqvpaVRVwK/COwbosSRqVUVwT+ADwN32vz03yj0n+LsmbutpWYLavzWxXkySto6FuEU3yP4Fngc90paPAOVX1ZJI3AH+V5DXAQuP/tcR6d9EbOuKcc84ZpouSpCUMfCaQ5HLgvwC/0Q3xUFXPVNWT3fP9wGPAq+j95d8/ZLQNOLLYuqtqd1VNV9X0xMTEoF2UJC1joBBIcjHwEeBXq+pHffWJJGd0z8+jdwH48ao6Cjyd5MLurqD3AncP3XtJ0lCWHQ5KchtwEXBWklngWnp3A70AuKe70/O+7k6gNwO/m+RZ4ATw4aqav6j8W/TuNPoZetcQ+q8jrImrvnAVB35wYK03Ky3oB89/ctk2F938hxt2/auxkr7A2vXndDD1c1PcePGNY9/OsiFQVTsXKH96kbZ3Ancu8t4M8NpV9U6SNFZNzR20FqkqrdRK5vb56vsGn9tn3OtfjZX0BdauPzrJaSMkqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSwwwBSWqYISBJDWvqw2Kj5hd5q1Ur/fCX//1vfJ4JSFLDDAFJapghIEkNMwQkqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSwwwBSWrYikIgyZ4kx5Mc7Ku9NMk9Sb7TPZ7Z1ZPkk0kOJXkwyev7lrm8a/+dJJePfnckSaux0jOBm4GLT6ldDXylqrYDX+leA1wCbO9+dgE3QS80gGuB/wRcAFw7HxySpPWxognkqureJJOnlC8DLuqe3wJ8FfhIV7+1qgq4L8lLkmzp2t5TVU8BJLmHXrDcNtQejJATwklqzTDXBF5RVUcBuseXd/WtwBN97Wa72mJ1SdI6GceF4SxQqyXqz11BsivJTJKZubm5kXZOknTSMCFwrBvmoXs83tVngbP72m0DjixRf46q2l1V01U1PTExMUQXJUlLGeZLZfYClwPXd49399WvTHI7vYvAP6yqo0m+CPx+38XgtwLXDLF9Nc5rONLwVhQCSW6jd2H3rCSz9O7yuR64I8kHge8B7+qa7wMuBQ4BPwLeD1BVTyX5PeD+rt3vzl8kliStj5XeHbRzkbfeskDbAq5YZD17gD0r7p0kaaz8juFNxOERSatlCGjFVhsyhpK08Tl3kCQ1zBCQpIYZApLUMENAkhrmhWFJG85KbioAbywYBc8EJKlhhoAkNcwQkKSGGQKS1DBDQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktSwpiaQu+oqOHBg8fd/8PiFy67jovsGbz9u4+7PuP997nv8yWXbX3jeywZe/0az0Y7XqNfdv/5xt9+MpqbgxhvHvx3PBCSpYQOfCSR5NfC5vtJ5wP8CXgL8JjDX1T9aVfu6Za4BPgicAH67qr446PYHsVyqTl69/J8VX/2J79BdXftxG3d/xv3vc7r/+6/WRjteo153//rH3V6DGzgEqupRYAogyRnA94G7gPcDn6iqj/e3T3I+sAN4DfDzwJeTvKqqTgzaB0nScEY1HPQW4LGq+ucl2lwG3F5Vz1TVd4FDwAUj2r4kaQCjCoEdwG19r69M8mCSPUnO7GpbgSf62sx2tedIsivJTJKZubm5hZpIkkZg6LuDkjwf+FXgmq50E/B7QHWPNwAfALLA4rXQOqtqN7AbYHp6esE2kjQov77ypFHcInoJ8EBVHQOYfwRI8ingr7uXs8DZfcttA46MYPvShrCSXywt/FLR6WUUw0E76RsKSrKl7713Age753uBHUlekORcYDvwjRFsX5I0oKHOBJL8B+BXgA/1lf8gyRS9oZ7D8+9V1cNJ7gC+CTwLXOGdQZK0voYKgar6EfCyU2rvWaL9dcB1w2xTkjQ6fmJYkhpmCEhSwwwBSWqYISBJDTMEJKlhhoAkNcwQkKSGGQKS1DBDQJIa1tR3DJ9unJBM2hg286yjnglIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJatjQ00YkOQw8DZwAnq2q6SQvBT4HTAKHgXdX1f9JEuCPgUuBHwHvq6oHhu2DpLZt5mkdxm1UZwK/VFVTVTXdvb4a+EpVbQe+0r0GuATY3v3sAm4a0fYlSQMY13DQZcAt3fNbgHf01W+tnvuAlyTZMqY+SJKWMYoQKOBLSfYn2dXVXlFVRwG6x5d39a3AE33Lzna1n5BkV5KZJDNzc3Mj6KIkaSGjmEr6jVV1JMnLgXuSfGuJtlmgVs8pVO0GdgNMT08/531J0mgMHQJVdaR7PJ7kLuAC4FiSLVV1tBvuOd41nwXO7lt8G3Bk2D5ILfD7JTQOQw0HJXlhkhfNPwfeChwE9gKXd80uB+7unu8F3pueC4Efzg8bSZLW3rBnAq8A7urd+cnzgM9W1ReS3A/ckeSDwPeAd3Xt99G7PfQQvVtE3z/k9iWNiGcabRoqBKrqceA/LlB/EnjLAvUCrhhmm5Kk0fE7hqVF+JexWuC0EZLUMENAkhpmCEhSw7wmsIYcY5a00XgmIEkNMwQkqWGGgCQ1zBCQpIal9yHejWt6erpmZmZGs7KrroIDBxZ9+77Hn1x2FRee97JN0361Nlr/3d/1a7+Sti23H4mpKbjxxoEWTbK/70u+luSZgCQ1rK0zgWWs9hbO0739am20/ru/69d+td/p21r79eaZgCRpRQwBSWqYISBJDTMEJKlhhoAkNcwQkKSGGQKS1DBDQJIaNnAIJDk7yd8meSTJw0l+p6t/LMn3kxzofi7tW+aaJIeSPJrkbaPYAUnS4Ib5Uplngf9RVQ8keRGwP8k93XufqKqP9zdOcj6wA3gN8PPAl5O8qqpODNEHSdIQBj4TqKqjVfVA9/xp4BFg6xKLXAbcXlXPVNV3gUPABYNuX5I0vJFcE0gyCbwO+HpXujLJg0n2JDmzq20FnuhbbJalQ0OSNGZDh0CSnwXuBK6qqn8FbgJeCUwBR4Eb5psusPiCs9cl2ZVkJsnM3NzcsF2UJC1iqBBI8tP0AuAzVfWXAFV1rKpOVNWPgU9xcshnFji7b/FtwJGF1ltVu6tquqqmJyYmhumiJGkJw9wdFODTwCNV9Ud99S19zd4JHOye7wV2JHlBknOB7cA3Bt2+JGl4w9wd9EbgPcBDSea/ruujwM4kU/SGeg4DHwKoqoeT3AF8k96dRVd4Z5Akra+BQ6Cq/oGFx/n3LbHMdcB1g25TkjRafmJYkhpmCEhSwwwBSWqYISBJDTMEJKlhhoAkNcwQkKSGGQKS1DBDQJIaNsy0EdJpZfLqzy/b5vD1b1+Dnkgbh2cCktSwTX0m4F9+krQ0zwQkqWGb+kxAS/NMSZJnApLUMENAkhpmCEhSwwwBSWqYISBJDTMEJKlhax4CSS5O8miSQ0muXuvtS5JOWtMQSHIG8KfAJcD5wM4k569lHyRJJ631mcAFwKGqeryq/i9wO3DZGvdBktRZ6xDYCjzR93q2q0mS1kGqau02lrwLeFtV/dfu9XuAC6rqv53Sbhewq3v5auDREXbjLOBfRri+ja6l/W1pX8H93eyG2d9fqKqJlTRc67mDZoGz+15vA46c2qiqdgO7x9GBJDNVNT2OdW9ELe1vS/sK7u9mt1b7u9bDQfcD25Ocm+T5wA5g7xr3QZLUWdMzgap6NsmVwBeBM4A9VfXwWvZBknTSmk8lXVX7gH1rvd0+Yxlm2sBa2t+W9hXc381uTfZ3TS8MS5I2FqeNkKSGNRMCrU1XkeRwkoeSHEgys979GbUke5IcT3Kwr/bSJPck+U73eOZ69nGUFtnfjyX5fneMDyS5dD37OEpJzk7yt0keSfJwkt/p6pvyGC+xv2M/xk0MB3XTVXwb+BV6t6neD+ysqm+ua8fGKMlhYLqqNuV91UneDPwbcGtVvbar/QHwVFVd3wX9mVX1kfXs56gssr8fA/6tqj6+nn0bhyRbgC1V9UCSFwH7gXcA72MTHuMl9vfdjPkYt3Im4HQVm0xV3Qs8dUr5MuCW7vkt9P4n2hQW2d9Nq6qOVtUD3fOngUfozS6wKY/xEvs7dq2EQIvTVRTwpST7u09gt+AVVXUUev9TAS9f5/6shSuTPNgNF22KoZFTJZkEXgd8nQaO8Sn7C2M+xq2EQBaobfZxsDdW1evpzdh6RTecoM3lJuCVwBRwFLhhfbszekl+FrgTuKqq/nW9+zNuC+zv2I9xKyGwoukqNpOqOtI9Hgfuojckttkd68ZW58dYj69zf8aqqo5V1Ymq+jHwKTbZMU7y0/R+IX6mqv6yK2/aY7zQ/q7FMW4lBJqariLJC7uLSyR5IfBW4ODSS20Ke4HLu+eXA3evY1/Gbv6XYeedbKJjnCTAp4FHquqP+t7alMd4sf1di2PcxN1BAN2tVTdycrqK69a5S2OT5Dx6f/1D71Phn91s+5vkNuAiejMtHgOuBf4KuAM4B/ge8K6q2hQXUxfZ34voDRMUcBj40Px4+ekuyX8G/h54CPhxV/4ovXHyTXeMl9jfnYz5GDcTApKk52plOEiStABDQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhv0/wHNHa2eXNdIAAAAASUVORK5CYII=\n",
       "text/plain": [
-       "<matplotlib.figure.Figure at 0xae98dd8>"
+       "<matplotlib.figure.Figure at 0x248b1a691d0>"
       ]
      },
      "metadata": {},
@@ -244,7 +280,7 @@
        "Text(0.5,0,'None')"
       ]
      },
-     "execution_count": 15,
+     "execution_count": 11,
      "metadata": {},
      "output_type": "execute_result"
     },
@@ -252,7 +288,7 @@
      "data": {
       "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEKCAYAAAARnO4WAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAADtRJREFUeJzt3XGM33ddx/Hni5VJhDmMLYa0hc3YOZqFOLjMEQyMgKRbTJuYhbRhIrjQBB0YQJIZDOD4Q4UQDLEKVXFChDH4AxpSUhMcQYGS3pxM2qXJWZBdRrICc/6xsDF5+8fvN+7n7dr77u53d+Xez0fS7L6/3+f3u/c+uT776/fu922qCknS5ve0jR5AkrQ+DL4kNWHwJakJgy9JTRh8SWrC4EtSE8sGP8lHkzyY5JvnuD9JPpRkLsm9SV40/TElSas15BX+7cCe89x/PbBr/Osg8NerH0uSNG3LBr+qvgz84DxL9gEfq5HjwLOTPHdaA0qSpmPLFJ5jO3D/xPH8+LbvLl6Y5CCjvwXwzGc+88VXXnnlFD69JPVx9913f6+qtq3ksdMIfpa4bcnrNVTVYeAwwMzMTM3Ozk7h00tSH0n+a6WPncZP6cwDOyeOdwAPTOF5JUlTNI3gHwFeN/5pnWuBh6vqSadzJEkba9lTOkk+CVwHbE0yD7wbeDpAVX0YOArcAMwBjwBvWKthJUkrt2zwq+rAMvcX8PtTm0iStCZ8p60kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNDAp+kj1JTieZS3LrEvc/L8ldSe5Jcm+SG6Y/qiRpNZYNfpKLgEPA9cBu4ECS3YuW/TFwZ1VdDewH/mrag0qSVmfIK/xrgLmqOlNVjwF3APsWrSng58YfXwo8ML0RJUnTMCT424H7J47nx7dNeg9wU5J54Cjw5qWeKMnBJLNJZs+ePbuCcSVJKzUk+Fnitlp0fAC4vap2ADcAH0/ypOeuqsNVNVNVM9u2bXvq00qSVmxI8OeBnRPHO3jyKZubgTsBquprwDOArdMYUJI0HUOCfwLYleTyJBcz+qbskUVrvgO8EiDJCxgF33M2knQBWTb4VfU4cAtwDLiP0U/jnExyW5K942VvB96Y5BvAJ4HXV9Xi0z6SpA20ZciiqjrK6Juxk7e9a+LjU8BLpzuaJGmafKetJDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJamJQcFPsifJ6SRzSW49x5rXJDmV5GSST0x3TEnSam1ZbkGSi4BDwG8A88CJJEeq6tTEml3AHwEvraqHkjxnrQaWJK3MkFf41wBzVXWmqh4D7gD2LVrzRuBQVT0EUFUPTndMSdJqDQn+duD+ieP58W2TrgCuSPKVJMeT7FnqiZIcTDKbZPbs2bMrm1iStCJDgp8lbqtFx1uAXcB1wAHgb5M8+0kPqjpcVTNVNbNt27anOqskaRWGBH8e2DlxvAN4YIk1n6uqH1XVt4DTjP4AkCRdIIYE/wSwK8nlSS4G9gNHFq35LPAKgCRbGZ3iOTPNQSVJq7Ns8KvqceAW4BhwH3BnVZ1McluSveNlx4DvJzkF3AW8o6q+v1ZDS5KeulQtPh2/PmZmZmp2dnZDPrck/bRKcndVzazksb7TVpKaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYGBT/JniSnk8wlufU8625MUklmpjeiJGkalg1+kouAQ8D1wG7gQJLdS6y7BHgL8PVpDylJWr0hr/CvAeaq6kxVPQbcAexbYt17gfcBP5zifJKkKRkS/O3A/RPH8+PbfiLJ1cDOqvr8+Z4oycEks0lmz549+5SHlSSt3JDgZ4nb6id3Jk8DPgi8fbknqqrDVTVTVTPbtm0bPqUkadWGBH8e2DlxvAN4YOL4EuAq4EtJvg1cCxzxG7eSdGEZEvwTwK4klye5GNgPHHnizqp6uKq2VtVlVXUZcBzYW1WzazKxJGlFlg1+VT0O3AIcA+4D7qyqk0luS7J3rQeUJE3HliGLquoocHTRbe86x9rrVj+WJGnafKetJDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJamJQcFPsifJ6SRzSW5d4v63JTmV5N4kX0zy/OmPKklajWWDn+Qi4BBwPbAbOJBk96Jl9wAzVfVC4DPA+6Y9qCRpdYa8wr8GmKuqM1X1GHAHsG9yQVXdVVWPjA+PAzumO6YkabWGBH87cP/E8fz4tnO5GfjCUnckOZhkNsns2bNnh08pSVq1IcHPErfVkguTm4AZ4P1L3V9Vh6tqpqpmtm3bNnxKSdKqbRmwZh7YOXG8A3hg8aIkrwLeCby8qh6dzniSpGkZ8gr/BLAryeVJLgb2A0cmFyS5GvgIsLeqHpz+mJKk1Vo2+FX1OHALcAy4D7izqk4muS3J3vGy9wPPAj6d5N+THDnH00mSNsiQUzpU1VHg6KLb3jXx8aumPJckacp8p60kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNDAp+kj1JTieZS3LrEvf/TJJPje//epLLpj2oJGl1lg1+kouAQ8D1wG7gQJLdi5bdDDxUVb8MfBD482kPKklanSGv8K8B5qrqTFU9BtwB7Fu0Zh/wD+OPPwO8MkmmN6YkabW2DFizHbh/4nge+LVzramqx5M8DPwC8L3JRUkOAgfHh48m+eZKht6EtrJorxpzLxa4FwvciwW/stIHDgn+Uq/UawVrqKrDwGGAJLNVNTPg82967sUC92KBe7HAvViQZHaljx1ySmce2DlxvAN44FxrkmwBLgV+sNKhJEnTNyT4J4BdSS5PcjGwHziyaM0R4HfGH98I/HNVPekVviRp4yx7Smd8Tv4W4BhwEfDRqjqZ5DZgtqqOAH8HfDzJHKNX9vsHfO7Dq5h7s3EvFrgXC9yLBe7FghXvRXwhLkk9+E5bSWrC4EtSE2sefC/LsGDAXrwtyakk9yb5YpLnb8Sc62G5vZhYd2OSSrJpfyRvyF4kec34a+Nkkk+s94zrZcDvkecluSvJPePfJzdsxJxrLclHkzx4rvcqZeRD4326N8mLBj1xVa3ZL0bf5P1P4JeAi4FvALsXrfk94MPjj/cDn1rLmTbq18C9eAXws+OP39R5L8brLgG+DBwHZjZ67g38utgF3AP8/Pj4ORs99wbuxWHgTeOPdwPf3ui512gvXga8CPjmOe6/AfgCo/dAXQt8fcjzrvUrfC/LsGDZvaiqu6rqkfHhcUbvediMhnxdALwXeB/ww/Ucbp0N2Ys3Aoeq6iGAqnpwnWdcL0P2ooCfG398KU9+T9CmUFVf5vzvZdoHfKxGjgPPTvLc5Z53rYO/1GUZtp9rTVU9DjxxWYbNZsheTLqZ0Z/gm9Gye5HkamBnVX1+PQfbAEO+Lq4ArkjylSTHk+xZt+nW15C9eA9wU5J54Cjw5vUZ7YLzVHsCDLu0wmpM7bIMm8Dg/88kNwEzwMvXdKKNc969SPI0Rlddff16DbSBhnxdbGF0Wuc6Rn/r+5ckV1XVf6/xbOttyF4cAG6vqg8keQmj9/9cVVU/XvvxLigr6uZav8L3sgwLhuwFSV4FvBPYW1WPrtNs6225vbgEuAr4UpJvMzpHeWSTfuN26O+Rz1XVj6rqW8BpRn8AbDZD9uJm4E6Aqvoa8AxGF1brZlBPFlvr4HtZhgXL7sX4NMZHGMV+s56nhWX2oqoerqqtVXVZVV3G6PsZe6tqxReNuoAN+T3yWUbf0CfJVkaneM6s65TrY8hefAd4JUCSFzAK/tl1nfLCcAR43finda4FHq6q7y73oDU9pVNrd1mGnzoD9+L9wLOAT4+/b/2dqtq7YUOvkYF70cLAvTgGvDrJKeB/gXdU1fc3buq1MXAv3g78TZK3MjqF8frN+AIxyScZncLbOv5+xbuBpwNU1YcZff/iBmAOeAR4w6Dn3YR7JUlagu+0laQmDL4kNWHwJakJgy9JTRh8SWrC4GvTG19t8wMTx3+Y5D0bOJK0IQy+OngU+K3xm5aktgy+Onic0WV137r4jiTPH//bA0/8GwTPG99++/h6419NcibJjROPeUeSE+PH/Mn6/W9Iq2Pw1cUh4LVJLl10+18yuszsC4F/BD40cd9zgV8HfhP4M4Akr2Z0HZtrgF8FXpzkZWs8uzQVBl8tVNX/AB8D3rLorpcAT/wLUh9nFPgnfLaqflxVp4BfHN/26vGve4B/A65kc17ITJvQWl8eWbqQ/AWjSP/9edZMXmtk8mqlmfjvn1bVR6Y8m7TmfIWvNqrqB4wurXvzxM1fZeGCfa8F/nWZpzkG/G6SZwEk2Z7kOdOeVVoLBl/dfID/f/30twBvSHIv8NvAH5zvwVX1T4xOAX0tyX8w+mc5L1mjWaWp8mqZktSEr/AlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJv4PFsyxeorkq3kAAAAASUVORK5CYII=\n",
       "text/plain": [
-       "<matplotlib.figure.Figure at 0xb1cc588>"
+       "<matplotlib.figure.Figure at 0x248b1dd0cc0>"
       ]
      },
      "metadata": {},
@@ -271,14 +307,14 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 16,
+   "execution_count": 12,
    "metadata": {},
    "outputs": [
     {
      "data": {
       "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAEB9JREFUeJzt3X+MZWV9x/H3p4A2UVK1OwouOy62+4c0bUEnq4amwfgLVuOqlQSaKJqaaQy0mtg/Vk2wMWlC/6g2FiJdhYCNgkZFtmFbBKRB00jYJSuwbIkrgTLuBlZoQKKtWfn2jznU6XBnZ3bO2XuXed6v5OaeHw/n+xzu7HzmOefcc1JVSJLa8xuT7oAkaTIMAElqlAEgSY0yACSpUQaAJDXKAJCkRvUOgCQbktyeZF+SvUk+OqLNOUmeTLKne13at64kqZ8TB9jGYeDjVXV3kpOB3Uluqar7F7X7XlW9c4B6kqQB9B4BVNXBqrq7m/4ZsA9Y33e7kqRja4gRwP9JshE4C7hzxOo3JvkhcAD4q6rau9z21q1bVxs3bhyyi5K0pu3evfunVTW1kraDBUCSFwPfBD5WVU8tWn038KqqejrJFuDbwKYltjMLzAJMT0+za9euobooSWtekodX2naQq4CSnMT8L/+vVNW3Fq+vqqeq6ulueidwUpJ1o7ZVVduraqaqZqamVhRikqRVGOIqoABXAfuq6rNLtDmla0eSzV3dx/vWliSt3hCHgM4G3g/cm2RPt+yTwDRAVV0JvA/4SJLDwC+AC8rbkErSRPUOgKr6PpBl2lwOXN63liRpOH4TWJIaZQBIUqMMAElqlAEgSY0a9JvAkjS0jdtuWlG7hy57xzHuydrjCECSGmUASFKjDABJapQBIEmNMgAkqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWrUEI+E3JDk9iT7kuxN8tERbZLk80n2J7knyWv71pUk9TPEzeAOAx+vqruTnAzsTnJLVd2/oM15wKbu9XrgC927JGlCeo8AqupgVd3dTf8M2AesX9RsK/DlmvcD4CVJTu1bW5K0eoOeA0iyETgLuHPRqvXAIwvm53huSEiSxmiw5wEkeTHwTeBjVfXU4tUj/pNaYjuzwCzA9PT0UN2Tnre8H76OlUFGAElOYv6X/1eq6lsjmswBGxbMnwYcGLWtqtpeVTNVNTM1NTVE9yRJIwxxFVCAq4B9VfXZJZrtAD7QXQ30BuDJqjrYt7YkafWGOAR0NvB+4N4ke7plnwSmAarqSmAnsAXYD/wc+NAAdSVJPfQOgKr6PqOP8S9sU8DFfWtJkobjN4ElqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWqUASBJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0a6pnAVyd5LMl9S6w/J8mTSfZ0r0uHqCtJWr0hHgkJcA1wOfDlI7T5XlW9c6B6kqSeBhkBVNUdwBNDbEuSNB7jPAfwxiQ/TPIvSX5vjHUlSSMMdQhoOXcDr6qqp5NsAb4NbBrVMMksMAswPT09pu5JUnvGMgKoqqeq6ulueidwUpJ1S7TdXlUzVTUzNTU1ju5JUpPGEgBJTkmSbnpzV/fxcdSWJI02yCGgJNcB5wDrkswBnwZOAqiqK4H3AR9Jchj4BXBBVdUQtSVJqzNIAFTVhcusv5z5y0QlSccJvwksSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNGtfdQCUdxzZuu2nFbR+67B3HsCcaJ0cAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVGDBECSq5M8luS+JdYnyeeT7E9yT5LXDlFXkrR6Q40ArgHOPcL684BN3WsW+MJAdSVJqzRIAFTVHcATR2iyFfhyzfsB8JIkpw5RW5K0OuM6B7AeeGTB/Fy3TJI0IeMKgIxYViMbJrNJdiXZdejQoWPcLUlq17gCYA7YsGD+NODAqIZVtb2qZqpqZmpqaiydk6QWjSsAdgAf6K4GegPwZFUdHFNtSdIIg9wNNMl1wDnAuiRzwKeBkwCq6kpgJ7AF2A/8HPjQEHUlSas3SABU1YXLrC/g4iFqSZKG4TeBJalRBoAkNcoAkKRGGQCS1CifCSxpbFb67GGfOzweBkAPPkhb0vOZh4AkqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWqUASBJjTIAJKlRBoAkNWqQAEhybpIHkuxPsm3E+g8mOZRkT/f68BB1JUmr1/teQElOAK4A3sr8w9/vSrKjqu5f1PRrVXVJ33qSpGEMcTO4zcD+qnoQIMn1wFZgcQAc97xToaSWDHEIaD3wyIL5uW7ZYn+S5J4k30iyYYC6kqQehgiAjFhWi+b/GdhYVX8A3Apcu+TGktkku5LsOnTo0ADdkySNMkQAzAEL/6I/DTiwsEFVPV5V/9PNfhF43VIbq6rtVTVTVTNTU1MDdE+SNMoQ5wDuAjYlOR34CXAB8KcLGyQ5taoOdrPvAvYNUFdakudzpOX1DoCqOpzkEuBm4ATg6qram+QzwK6q2gH8ZZJ3AYeBJ4AP9q0rSepnkEdCVtVOYOeiZZcumP4E8IkhakmShuEzgdcoD4FIWo4BoFVbacjAr4PGYJKOH94LSJIaZQBIUqMMAElqlAEgSY3yJLCkNceLDVbGEYAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDVqkABIcm6SB5LsT7JtxPoXJvlat/7OJBuHqCtJWr3eAZDkBOAK4DzgDODCJGcsavZnwH9V1e8CnwP+tm9dSVI/Q4wANgP7q+rBqvolcD2wdVGbrcC13fQ3gDcnyQC1JUmrNMTN4NYDjyyYnwNev1Sb7iHyTwK/Dfx0gPpa47yxl3RspKr6bSA5H3h7VX24m38/sLmq/mJBm71dm7lu/sddm8dHbG8WmAWYnp5+3cMPP7yqfh2vvzRW069x7cvx+v9sHMb1eMu19FmupZ+XtfT5J9ldVTMraTvEIaA5YMOC+dOAA0u1SXIi8FvAE6M2VlXbq2qmqmampqYG6J4kaZQhAuAuYFOS05O8ALgA2LGozQ7gom76fcB3q+/QQ5LUS+9zAN0x/UuAm4ETgKuram+SzwC7qmoHcBXwT0n2M/+X/wV960qS+hnkiWBVtRPYuWjZpQum/xs4f4hakqRh+EhISVqF58PJ7eV4KwhJapQjAGmM1sJfjVo7HAFIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmN8l5AzwPeP0ZaG463f8uOACSpUb0CIMnLktyS5Efd+0uXaPerJHu61+LHRUqSJqDvCGAbcFtVbQJu6+ZH+UVVndm93tWzpiRpAH0DYCtwbTd9LfDuntuTJI1J3wB4RVUdBOjeX75Eu99MsivJD5IYEpJ0HFj2KqAktwKnjFj1qaOoM11VB5K8Gvhuknur6sdL1JsFZgGmp6ePooQk6WgsGwBV9Zal1iV5NMmpVXUwyanAY0ts40D3/mCSfwPOAkYGQFVtB7YDzMzM1LJ7IElalb6HgHYAF3XTFwE3Lm6Q5KVJXthNrwPOBu7vWVeS1FPfALgMeGuSHwFv7eZJMpPkS12b1wC7kvwQuB24rKoMAEmasF7fBK6qx4E3j1i+C/hwN/3vwO/3qSNJGp63gpDUvOPtFg3j4q0gJKlRBoAkNcoAkKRGGQCS1ChPAktrUKsnNXV0HAFIUqMcAUhaFUcZz3+OACSpUY4ApFXyL2A93zkCkKRGGQCS1CgDQJIa5TmAMfO4saTjhSMASWqUASBJjeoVAEnOT7I3yTNJZo7Q7twkDyTZn2Rbn5qSpGH0HQHcB7wXuGOpBklOAK4AzgPOAC5MckbPupKknvo+EnIfQJIjNdsM7K+qB7u21wNb8cHwkjRR4zgHsB54ZMH8XLdMkjRBy44AktwKnDJi1aeq6sYV1Bg1PKgj1JsFZgGmp6dXsHlJ0mosGwBV9ZaeNeaADQvmTwMOHKHedmA7wMzMzJJBIUnqZxyHgO4CNiU5PckLgAuAHWOoK0k6gr6Xgb4nyRzwRuCmJDd3y1+ZZCdAVR0GLgFuBvYBX6+qvf26LUnqq+9VQDcAN4xYfgDYsmB+J7CzTy1J0rD8JrAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVF9nwh2fpK9SZ5JMnOEdg8luTfJniS7+tSUJA2j1xPBgPuA9wL/uIK2b6qqn/asJ0kaSN9HQu4DSDJMbyRJYzOucwAFfCfJ7iSzY6opSTqCZUcASW4FThmx6lNVdeMK65xdVQeSvBy4Jcl/VNUdS9SbBWYBpqenV7h5SdLRWjYAquotfYtU1YHu/bEkNwCbgZEBUFXbge0AMzMz1be2JGm0Y34IKMmLkpz87DTwNuZPHkuSJqjXSeAk7wH+AZgCbkqyp6renuSVwJeqagvwCuCG7kTxicBXq+pfe/ZbGtRDl71j0l2Qxq7vVUA3ADeMWH4A2NJNPwj8YZ86kqTh9f0ewHHLv+gk6ci8FYQkNWrNjgB09Bw1SW1xBCBJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY1K1fF7y/0kh4CHB9zkOqDl5xK7/+6/+7/2vaqqplbS8LgOgKEl2VVVM5Pux6S4/+6/+9/u/o/iISBJapQBIEmNai0Atk+6AxPm/rfN/df/09Q5AEnSr7U2ApAkdZoIgCTnJnkgyf4k2ybdn3FL8lCSe5PsSbJr0v0ZhyRXJ3ksyX0Llr0syS1JftS9v3SSfTxWltj3v07yk+5nYE+SLZPs47GUZEOS25PsS7I3yUe75U18/kdjzQdAkhOAK4DzgDOAC5OcMdleTcSbqurMhi6DuwY4d9GybcBtVbUJuK2bX4uu4bn7DvC57mfgzKraOeY+jdNh4ONV9RrgDcDF3b/5Vj7/FVvzAQBsBvZX1YNV9UvgemDrhPukY6yq7gCeWLR4K3BtN30t8O6xdmpMltj3ZlTVwaq6u5v+GbAPWE8jn//RaCEA1gOPLJif65a1pIDvJNmdZHbSnZmgV1TVQZj/JQG8fML9GbdLktzTHSJq4vBHko3AWcCd+Pk/RwsBkBHLWrv06eyqei3zh8EuTvLHk+6Qxu4LwO8AZwIHgb+bbHeOvSQvBr4JfKyqnpp0f45HLQTAHLBhwfxpwIEJ9WUiqupA9/4YcAPzh8Va9GiSUwG698cm3J+xqapHq+pXVfUM8EXW+M9AkpOY/+X/lar6Vre42c9/KS0EwF3ApiSnJ3kBcAGwY8J9GpskL0py8rPTwNuA+478X61ZO4CLuumLgBsn2JexevYXX+c9rOGfgSQBrgL2VdVnF6xq9vNfShNfBOsueft74ATg6qr6mwl3aWySvJr5v/oBTgS+2sL+J7kOOIf5O0A+Cnwa+DbwdWAa+E/g/KpacydLl9j3c5g//FPAQ8CfP3s8fK1J8kfA94B7gWe6xZ9k/jzAmv/8j0YTASBJeq4WDgFJkkYwACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJatT/AieUj5Gq0/4vAAAAAElFTkSuQmCC\n",
       "text/plain": [
-       "<matplotlib.figure.Figure at 0x8919a90>"
+       "<matplotlib.figure.Figure at 0x248b1e7fa58>"
       ]
      },
      "metadata": {},
@@ -298,14 +334,14 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 17,
+   "execution_count": 13,
    "metadata": {},
    "outputs": [
     {
      "data": {
       "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAEU9JREFUeJzt3X2MZmV9xvHvVV5sorS+7Cq47LjY7h+lb2AniKFpaAQLaFy10kATBVMzjZFUEpt01QSNSRNaW0ssRroKERsVjYpsw1YEhaBpICxkBZYtdbvBMu7KIjQg0dYgv/4xj2Ucnnk953lmdu7vJ5nMebk5v/vMYeea+5zznJOqQpLUnl9a7Q5IklaHASBJjTIAJKlRBoAkNcoAkKRGGQCS1KjOAZBkc5Jbk+xLsjfJe4a0OTPJE0n2DL4u61pXktTN0T1s42ngvVV1T5LjgLuT3FxVD8xp962qekMP9SRJPeg8AqiqQ1V1z2D6R8A+YFPX7UqSRquPEcD/S7IFOBW4c8jq1yT5DnAQ+Muq2rvY9jZs2FBbtmzps4uStK7dfffdP6yqjUtp21sAJHkB8GXg0qp6cs7qe4BXVNVTSc4DvgpsnWc7U8AUwMTEBLt37+6ri5K07iX53lLb9nIXUJJjmPnl/9mq+src9VX1ZFU9NZjeBRyTZMOwbVXVjqqarKrJjRuXFGKSpBXo4y6gAFcD+6rqo/O0OX7QjiSnDeo+1rW2JGnl+jgFdAbwNuC+JHsGy94PTABU1VXAW4F3JXka+AlwQfkYUklaVZ0DoKq+DWSRNlcCV3atJUnqj58ElqRGGQCS1CgDQJIaZQBIUqN6/SSwJM21ZfuNS2r30OWvH3FPNJcjAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVF9vBJyc5Jbk+xLsjfJe4a0SZKPJdmf5N4kr+paV5LUTR8Pg3saeG9V3ZPkOODuJDdX1QOz2pwLbB18vRr4xOC7JGmVdB4BVNWhqrpnMP0jYB+waU6zbcBnasYdwAuTnNC1tiRp5Xq9BpBkC3AqcOecVZuAh2fNT/PckJAkjVFv7wNI8gLgy8ClVfXk3NVD/pOaZztTwBTAxMREX92T1pSlPCPf5+Nr1HoZASQ5hplf/p+tqq8MaTINbJ41fyJwcNi2qmpHVU1W1eTGjRv76J4kaYg+7gIKcDWwr6o+Ok+zncDbB3cDnQ48UVWHutaWJK1cH6eAzgDeBtyXZM9g2fuBCYCqugrYBZwH7Ad+DLyjh7qSpA46B0BVfZvh5/hntyng3V1rSZL64yeBJalRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmN6uudwNckOZzk/nnWn5nkiSR7Bl+X9VFXkrRyfbwSEuDTwJXAZxZo862qekNP9SRJHfUyAqiq24HH+9iWJGk8xnkN4DVJvpPkX5P85hjrSpKG6OsU0GLuAV5RVU8lOQ/4KrB1WMMkU8AUwMTExJi6J0ntGcsIoKqerKqnBtO7gGOSbJin7Y6qmqyqyY0bN46je5LUpLEEQJLjk2Qwfdqg7mPjqC1JGq6XU0BJPg+cCWxIMg18EDgGoKquAt4KvCvJ08BPgAuqqvqoLUlamV4CoKouXGT9lczcJipJWiP8JLAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDVqXE8DlTRGW7bfuGibhy5//Rh6orXMEYAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqVC8BkOSaJIeT3D/P+iT5WJL9Se5N8qo+6kqSVq6vEcCngXMWWH8usHXwNQV8oqe6kqQV6iUAqup24PEFmmwDPlMz7gBemOSEPmpLklZmXJ8E3gQ8PGt+erDs0Jjqc+nXLmXPD/aMq5y0oB8c+9iibc789EfW7PaXYyl9gfH150hwyvGncMU5V4y8zrguAmfIshraMJlKsjvJ7kcffXTE3ZKkdo1rBDANbJ41fyJwcFjDqtoB7ACYnJwcGhIrMY40lZZqKc/que3ilT+rZ9TbX46l9AXG1x89a1wjgJ3A2wd3A50OPFFVYzv9I0l6rl5GAEk+D5wJbEgyDXwQOAagqq4CdgHnAfuBHwPv6KOuJGnlegmAqrpwkfUFvLuPWpKkfvhJYElqlAEgSY0yACSpUQaAJDXKdwJLWpal3tfvO4fXPgNghXzptqQjnaeAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDWqlwBIck6SB5PsT7J9yPqLkzyaZM/g65191JUkrVznZwElOQr4OHA2My9/vyvJzqp6YE7TL1TVJV3rSZL60cfD4E4D9lfVAYAk1wHbgLkBsKb5cDdJrenjFNAm4OFZ89ODZXP9cZJ7k3wpyeYe6kqSOugjADJkWc2Z/xdgS1X9DnALcO28G0umkuxOsvvRRx/toXuSpGH6CIBpYPZf9CcCB2c3qKrHqup/B7OfBH5vvo1V1Y6qmqyqyY0bN/bQPUnSMH1cA7gL2JrkJOD7wAXAn85ukOSEqjo0mH0jsK+HumqY12yk7joHQFU9neQS4CbgKOCaqtqb5MPA7qraCfxFkjcCTwOPAxd3rStJ6qaXV0JW1S5g15xll82afh/wvj5qSZL64TuB1wlPiUhaLgNAS7LcgDGQpLXPZwFJUqMMAElqlAEgSY0yACSpUV4ElrSmLOUGAvAmgj44ApCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVEGgCQ1ygCQpEb1EgBJzknyYJL9SbYPWf+8JF8YrL8zyZY+6kqSVq5zACQ5Cvg4cC5wMnBhkpPnNPsz4L+r6teBfwD+pmtdSVI3fYwATgP2V9WBqvopcB2wbU6bbcC1g+kvAa9Nkh5qS5JWqI+HwW0CHp41Pw28er42g5fIPwG8BPhhD/WX5NJLYc+e+df/4MDpi27jzDtW3n7URt2fUf987jjw2KLtT3/lS1a8/bVmrR2vvrc9e/ujbr8enXIKXHHF6Ov0EQDD/pKvFbSZaZhMAVMAExMTK+7U3CcKPv7tk/np4V/5hWWzf6HMnl6K5bZf7i+45bYfdX9G/fM50n/+R/rxWs72j8RjO3u7o25/JOkjAKaBzbPmTwQOztNmOsnRwK8Cjw/bWFXtAHYATE5ODg2JlXjxWQ88Z9ltY3yc7Jbti/+5ctsvvFN3ee1H3Z8j3ah//kf68TqS/39YSt/h2f6Puv2RpI9rAHcBW5OclORY4AJg55w2O4GLBtNvBb5ZVb39cpckLV/nEcDgnP4lwE3AUcA1VbU3yYeB3VW1E7ga+Ock+5n5y/+CrnUlSd308kawqtoF7Jqz7LJZ0/8DnN9HLUlSP3wlpKSm+CrJZ/koCElqlCMAqQf+VakjkSMASWqUASBJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUT4LaI3y2TLS2rCe/y06ApCkRnUKgCQvTnJzku8Ovr9onnY/S7Jn8DX3dZGSpFXQdQSwHfhGVW0FvjGYH+YnVXXK4OuNHWtKknrQNQC2AdcOpq8F3tRxe5KkMekaAC+rqkMAg+8vnafdLyfZneSOJIaEJK0Bi94FlOQW4Pghqz6wjDoTVXUwySuBbya5r6r+c556U8AUwMTExDJKSJKWY9EAqKqz5luX5JEkJ1TVoSQnAIfn2cbBwfcDSW4DTgWGBkBV7QB2AExOTtaieyBJWpGup4B2AhcNpi8CbpjbIMmLkjxvML0BOAN4oGNdSVJHXQPgcuDsJN8Fzh7Mk2QyyacGbX4D2J3kO8CtwOVVZQBI0irr9EngqnoMeO2Q5buBdw6m/w347S51JEn981EQko5o6/lRDaPmoyAkqVEGgCQ1ygCQpEYZAJLUKC8CS0cAL3RqFBwBSFKjHAFIcoTRKEcAktQoRwDSEP5FrBY4ApCkRhkAktQoA0CSGuU1gDHxnLKktcYRgCQ1ygCQpEZ1CoAk5yfZm+SZJJMLtDsnyYNJ9ifZ3qWmJKkfXUcA9wNvAW6fr0GSo4CPA+cCJwMXJjm5Y11JUkddXwm5DyDJQs1OA/ZX1YFB2+uAbfhieElaVeO4C2gT8PCs+Wng1WOo+wsuu2UHJx8+8IsL7/jIuLuxZlx34LHFG62jn09r+6sj3CmnwBVXjLzMogGQ5Bbg+CGrPlBVNyyhxrDhQS1QbwqYApiYmFjC5iVJK7FoAFTVWR1rTAObZ82fCBxcoN4OYAfA5OTkvEGxXB8+a+o5y1q+N/+C7Tcu2mY9/Xxa219pKcZxG+hdwNYkJyU5FrgA2DmGupKkBXS9DfTNSaaB1wA3JrlpsPzlSXYBVNXTwCXATcA+4ItVtbdbtyVJXXW9C+h64Pohyw8C582a3wXs6lJLktQvPwksSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWpU1zeCnZ9kb5Jnkkwu0O6hJPcl2ZNkd5eakqR+dHojGHA/8Bbgn5bQ9g+r6ocd60mSetL1lZD7AJL00xtJ0tiM6xpAAV9PcneSqTHVlCQtYNERQJJbgOOHrPpAVd2wxDpnVNXBJC8Fbk7y71V1+zz1poApgImJiSVuXpK0XIsGQFWd1bVIVR0cfD+c5HrgNGBoAFTVDmAHwOTkZHWtLUkabuSngJI8P8lxP58GXsfMxWNJ0irqdBE4yZuBfwQ2Ajcm2VNVf5Tk5cCnquo84GXA9YMLxUcDn6uqr3Xst7QsD13++tXugrTmdL0L6Hrg+iHLDwLnDaYPAL/bpY4kqX9dPwewZvkXnyQtzEdBSFKj1u0IQAtzhCTJEYAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDUqVWv3kftJHgW+1+MmNwAtvZe4pf1taV/B/V3vuuzvK6pq41IarukA6FuS3VU1udr9GJeW9relfQX3d70b1/56CkiSGmUASFKjWguAHavdgTFraX9b2ldwf9e7sexvU9cAJEnPam0EIEkaaCIAkpyT5MEk+5NsX+3+jFqSh5Lcl2RPkt2r3Z++JbkmyeEk989a9uIkNyf57uD7i1azj32aZ38/lOT7g2O8J8l5q9nHPiXZnOTWJPuS7E3ynsHydXmMF9jfkR/jdX8KKMlRwH8AZwPTwF3AhVX1wKp2bISSPARMVtW6vG86yR8ATwGfqarfGiz7W+Dxqrp8EPIvqqq/Ws1+9mWe/f0Q8FRV/d1q9m0UkpwAnFBV9yQ5DrgbeBNwMevwGC+wv3/CiI9xCyOA04D9VXWgqn4KXAdsW+U+qYOquh14fM7ibcC1g+lrmfkHtC7Ms7/rVlUdqqp7BtM/AvYBm1inx3iB/R25FgJgE/DwrPlpxvTDXUUFfD3J3UmmVrszY/KyqjoEM/+ggJeucn/G4ZIk9w5OEa2L0yFzJdkCnArcSQPHeM7+woiPcQsBkCHL1vd5Lzijql4FnAu8e3AKQevLJ4BfA04BDgF/v7rd6V+SFwBfBi6tqidXuz+jNmR/R36MWwiAaWDzrPkTgYOr1JexqKqDg++HgeuZOQ223j0yOJf683Oqh1e5PyNVVY9U1c+q6hngk6yzY5zkGGZ+GX62qr4yWLxuj/Gw/R3HMW4hAO4CtiY5KcmxwAXAzlXu08gkef7gQhJJng+8Drh/4f9qXdgJXDSYvgi4YRX7MnI//0U48GbW0TFOEuBqYF9VfXTWqnV5jOfb33Ec43V/FxDA4PapK4CjgGuq6q9XuUsjk+SVzPzVD3A08Ln1tr9JPg+cycwTEx8BPgh8FfgiMAH8F3B+Va2LC6fz7O+ZzJwaKOAh4M9/fn78SJfk94FvAfcBzwwWv5+Z8+Lr7hgvsL8XMuJj3EQASJKeq4VTQJKkIQwASWqUASBJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIa9X+gQk7CmU6YZgAAAABJRU5ErkJggg==\n",
       "text/plain": [
-       "<matplotlib.figure.Figure at 0xb2b8128>"
+       "<matplotlib.figure.Figure at 0x248b1efd048>"
       ]
      },
      "metadata": {},
@@ -322,7 +358,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 18,
+   "execution_count": 14,
    "metadata": {},
    "outputs": [
     {
@@ -354,7 +390,7 @@
        " 621]"
       ]
      },
-     "execution_count": 18,
+     "execution_count": 14,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -365,6 +401,13 @@
     "friends"
    ]
   },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
   {
    "cell_type": "code",
    "execution_count": null,